

Geoindex

By PATRICIA FULTON and HAROLD JOHNSON,
assisted by WILLARD L. MCINTOSH, MARGARET EISTER, LAWRENCE BALCERAK,
DONALD HANSON, RICHARD THOENSEN, and PEARL PORTER

GEOLOGICAL SURVEY PROFESSIONAL PAPER 1172

Data base and data-base management system
Jor the index to geologic maps

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON:1982

UNITED STATES DEPARTMENT OF THE INTERIOR

JAMES G. WATT, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

Library of Congress catalog-card No. 82-600504

For sale by the Superintendent of Documents, U.S. Government Printing Office
Washington, D.C. 20402

CONTENTS

Abstract
Introduction
Acknowledgments
Data-base management system
Purpose
Glossary and system structure
Data acquisition
Text data
Map data
Publication copy
Storage and retrieval system
Data base
Structure of the data
Text data
Map data
Text and map data
System specifications
Status of the system
References cited
Appendixes: System specifications
Appendix A. System flowchart
Appendix B. Operational instructions
How to run the following:

comtape.ec
chkref
geofmt.ec
to-nbiD
concat
list_tape_contents
Listing 1. Example of list_tape contents ______
tapedwg

dwgdisk
Listing 2. Example of rdtape.tel _____________
seldisk
dwgtape
versatec.ec
index_ versatec
Listing 3. Parameter cards for a Versatec plot _
sort.vers.coor.ec
master
state_optima
addrad
covert.ec
gr.ec
inplot.ec
pnlé
bigsta
usmerg.ec
state__to_tape
pull_off

backup

restore

verplot

g
K

SR R N N N

Appendixes: System specifications —Continued
Appendix B. Operational instructions—Continued
How to run the following — Continued

Listing 4. Formation of the command file for
verplot and an example command file .____

Listing 5. Commands for verplot ____________
end plot
legend
linwind
outline
pattern
plot
reorg
scale
symbol

pin90
Listing 6. The 48 conterminous States and their
corresponding two-digit numbers that are

used for plotting individual States as used in

file stat90

Appendix C. Computer program reference ______________
Exec_com name: comtape.ec
Program name: chkref
Subroutine name:

rfskip_chkref
clean_chkref
reup_chkref
blankcheck__chkref
typecheck__chkref
locatl_chkref
checkitem__chkref
setup__chkref
Exec_com name: geofmt.ec
Subroutine name:
geofmt.qedx
geofmt
geofmt2.qedx
geofmt3.qedx
geofmta.qedx
embed__tabs
to_nbiPP
Program name:
to-nbiD
concat
Subroutine name:
main_concat
alter__concat
locate__concat
modify_ concat
vector__concat
wryte__concat
contrl__concat
File name: matrix

1

Page

45
48
48
48
48
48

49
49
50

51

85
87
88
89
90

94
94

v CONTENTS

Page Page
Appendixes: System specifications — Continued Appendixes: System specifications —Continued
Appendix C. Computer program reference—Continued Appendix C. Computer program reference—Continued

Program name: Exec__com name —Continued
tapedwg 96 inplot.ec 195
dwgdisk 103 Program name: pnlé 196
seldisk 110 Subroutine name:
dwgtape 118 pos 205

Exec_com name: versatec.ec 125 plo 205

Program name: index_ versatec 126 plod 206

Subroutine name: ploc6 207
legend 130 assoc 209
rotate 133 Program name: bigsta 210
rdftur 134 Subroutine name:
penchg 135 outl_bigsta 214
plotli 135 out2_bigsta 214
pllich 137 bigcal_bigsta 215
pltsel 140 Function name: irads_bigsta 216
plotch 141 Subroutine name: prim_bigsta 217
shade 1438 Function name: icards_bigsta 218
srtdup 144 Exec_com name: usmerg.ec 218
pattern 146 Program name: state__to_tape 219

Exec_com: sort.vers.coor.ec 147 Subroutine name:

Subroutine name: heading_state__to_tape 221
pgml.vers.exthdr 149 up__file_number 222
pgm2.vers.sequent 150 sts_begin 223
pgm3.vers.merge 150 Exec_com name:

Program name: master 152 disk_to_tape_fb_retain.ec 225

Subroutine name: disk__to_tape_vbs_retain.ec 225
arentr__master 154 list_state_tape.ec 225
weight_master 158 Program name: pull_off 226
adjust_master 158 Subroutine name:
work__master 159 state_pull_off 227

Function name: separate_pull_off 228
dist_master 160 Exec_com name:
ncross_master 161 tape_to_disk_fb__retain.ec 230

Subroutine name: tape_to_disk_vbs_retain.ec 230
cntest_master 161 Program name: backup 231
dm__master 165 Exec_com name:

File name: areano 165 backup.ec 231

Program name: state_optima 167 dump.ec 232

Subroutine name: optima 168 Subroutine name:

Exec_com name: backupl 232
open_si.ec 170 backup2 234
close.ec 171 Program name: restore 235

Program name: addrad 171 Exec_com name: retrieve.ec 236

Subroutine name: Program name: verplot 237
optima._addrad 174 Subroutine name:
ibound_addrad 176 change_ origin 240
decoder_addrad 177 change_ width 242
srch20_addrad 178 change__symbol 243
icoder_addrad 179 scaleplot 245
srch30__addrad 180 pattern_verplot 246
rconv_addrad 181 interpret_data 247
dms 183 newpattern 248
read2_addrad 183 plotoutline 253
srch40_addrad 184 find_octal_number 258
read40_addrad 185 find__number 259
weight__addrad 186 set_shade 261
center_addrad 187 plotlegend 262
ftnumber 189 plotfile 267

Exec_com name: covert.ec 190 pattern 280

File name: crfile 191 Program name: pin90 281

Program name: setmas 192 Subroutine name:

Exec_com name: enlrg 286
gr.ec 193 indiv 288

CONTENTS

P
Appendixes: System specifications—Continued e Appendixes: System specifications — Continued
Appendix C. Computer program reference —Continued Appendix D. Formats and notes
Subroutine name —Continued Format of refNM files
min_max 290 .
grid 291 Format of reference file
plocv 294 Notes for entering card data
ILLUSTRATIONS

FiGURE 1.

12.
13.
14.

. Part of a sheet of bibliographic references taken from the published Kentucky Index
. List of attributes (names of data fields) that constitute a record
. Photographs of a CRT plot showing:

. Partial list of text data in card image form, for reference 90, Colorado

Sheet from the published Kentucky index, showing geologic maps whose scales range from smaller than 1:63,360 through and
including 1:250,000

4. Areas of North Dakota for which geologic maps have been published at scales smaller than 1:63,360 ________________
5. Some areas of the United States that are covered by published geologic maps

. Plot showing all the areas for which geologic maps have been published in the States of Idaho, Nevada, and Arizona _________
. Plots from the on-line data base showing areas geologically mapped in the United States:

7. After 1960 and published at a scale of 1:250,000
8. At scales larger than 1:250,000

Map data in:
10. Cartesian coordinates for reference 90, Colorado
11. Radians for reference 90, Colorado
Complete record for reference 90, Colorado
Table showing names of files in permanent storage
Status map for the Geoindex, automatically generated monthly

Page

297
297
298
298

Page

14
16
18

18
18
19
20
21

CONVERSION FACTORS

Metric unit

Inch-Pound equivalent

Metric unit

Inch-Pound equivalent

Length Specific combinations—Continued
millimeter (mm) = 0.03937 inch (in) liter per second (L/s) = .0853 cubic foot per second
meter (m) = 3.28 feet (ft) cubic meter per second = 91.47 cubic feet per second per
kilometer (km) = .62 mile (mi) per square kilometer square mile [(ft3/s)/mi?]
Nl) 3.28 feet d (hydrauli
meter per day (m/d = . eet per day ydraulic
Area P v (m/ conductivity) (ft/d)
square meter (m2) = 10.76 square feet (ft2) meter per kilometer = 5.28 feet per mile (ft/mi)
square kilometer (km?2) = .386 square mile (mi2) (m/km)
hectare (ha) = 247 acres kilometer per hour .9113 foot per second (ft/s)
(km/h)
Volume meter per second (m/s) = 3.28 feet per second
cubic centimeter (cm3) = 0.061 cubic inch (in3) meter squared per day = 10.764 feet squared per day (ft27d)
liter (= 61.03 cubic inches (m2/d) (transmissivity)
cubic meter (m?) = 3531 cubic feet (fte) cubic meter per second = 22.826 million gallons per day
cubic meter = .00081 acre-foot (acre-ft) (m3/s) (Mgal/d)
fhoe hectometer (hm?) =819.7 . acrefest cubic meter per minute ~ =264.2 gallons per minute (gal/min)
liter = 1.06 quarts (qt) (m?/min)
liter = .26 gallon (gal) liter per second (L/s) = 15.85 gallons per minute
cubic meter = .00026 mﬂ}i(‘))ﬂ“ ggaallons (Mgal or liter per second per = 4.83 gallons perim)ix?éte per foot
_ _ meter [(L/s)/m] [(gal/min)/ft]
cubic meter = 6.290 barrels (bbl) (1 bbl=42 gal) kil(()l!(ne}ili per hour — 62 mile per hour (mi/h)
: m
Welg‘ht meter per second (m/s) = 2.237 miles per hour
gram (g) = 0.035 ounce, avoirdupois (oz avdp) gram per cubic = 62.43 pounds per cubic foot (1b/ft3)
gratm ¢ ® = 1.0032 pound.havoinitgu(%)gsl l})]b avdp) centimeter (g/cm3)
metric tons = .10 tons, short (2 2
1 , P gram per square 2.048 pounds per square foot (1b/ft2)
metric tons = 0.9842 ton, long (2,240 1b) centimeter (&/cm?) /
Sp ecific combinations gr%:}nntli)ﬁfetseqruare = .0142 pound per square inch (Ib/in2)
kilogram per square = 096 atmosphere (atm)
centimeter (kg/cm?) Temperature
kilgggﬁ\le;t)gi square = .98 bar (0.9869 atm) degree Celsius (°C) = 18 degrees Fahrenheit (°F)
cubic meter per second = 35.3 cubic feet per second (ft3/s) degrees Celsius =[(1.8X°C)+32] degrees Fahrenheit

(m3/s)

(temperature)

Any trade names in this publication are used for descriptive purposes only and do not constitute endorsement by the U.S. Geological Survey.

GEOINDEX

By PATRICIA FULTON and HAROLD JOHNSON,
assisted by WILLARD L. MCINTOSH,
MARGARET EISTER, LAWRENCE BALCERAK, DONALD HANSON,
RICHARD THOENSEN, and PEARL PORTER

ABSTRACT

The acquisition and the dissemination of information are ever-
increasing problems for Federal agencies engaged in research. To
facilitate the publication of its geologic index maps, the U.S. Geological
Survey has moved toward computer-based operations. The index to
geologic maps (Geoindex) has been established and developed as a data
base and data-base management system that provides three main
capabilities. The primary capability is to provide the means to generate
rapidly geologic index maps for publication. A second capability is to
provide users an immediate access to all items in the data base. The
third capability is to provide nationwide summary information to
policy makers.

INTRODUCTION

The first U.S. Geological Survey indexes to geologic
maps were published in the 1940’s. They consisted of
State base maps at scales of 1:750,000 or 1:1,000,000 on
which the outlines of published geologic maps were
shown. By the mid-1960’s, most of the indexes were out
of date. Revision was delayed because of the rising cost
of color printing (six press runs) and the mechanical dif-
ficulty of showing legibly the additional (doubled)
coverage produced in the 1950’s and 1960’s.

Some of the problems were solved in the publication of
the Montana index in 1969. Heretofore, geologic index
maps had shown all the geologic coverage. In the Mon-
tana index, only maps equal or better in quality and com-
prehensiveness than the State geologic map were in-
cluded. This limitation imposed a reasonable and stan-
dard criterion for determining what should be included
in the index. All very small scale maps, as well as many
sketchy or generalized maps, were omitted. Elimination
of such material produced a more legible index without
serious loss of geologic-map coverage. The revised in-
dex, like previous indexes, included both published and
open-file maps of the U.S. Geological Survey, published
maps of the State surveys, and maps published by other
organizations.

When computer-assisted techniques were introduced,
the project grew, and ideas continued to change and

evolve. Henceforth, maps published at the following

scale ranges will be indexed on three separate sheets:

1. Scales of 1:24,000 and larger

2. Scales smaller than 1:24,000, through and including
1:63,360

3. Scales smaller than 1:63,360, through and including
1:250,000

ACKNOWLEDGMENTS

The authors thank Joseph Moses Botbol and Roger
Bowen for their assistance in the use of the GRASP
system. Diane Lewis and Karen Shallcross completed
compilation and entered the data into the Geoindex data
base; Jane Timmins typed the manuscript and arranged
it in the proper sequence; James Fisher, Kevin Laurent,
and Maryjon McAvery helped in writing the computer
programs and in constructing the data base. All these
people are from the U.S. Geological Survey.

We also thank William Strauss, Denise Maurer, and
Ray Wisecarver of the Johns Hopkins Applied Physics
Laboratory for their invaluable assistance in the
digitization of the data.

THE DATA-BASE MANAGEMENT SYSTEM
PURPOSE

The primary purpose of the Geoindex Data-Base
Management System is to generate geologic index maps
as quickly as possible. These published reports are wide-
ly distributed to a large, diverse group. A published
geologic index consists of a series of map sheets and ac-
companying text material. The Geoindex is constructed
State by State. Each map sheet consists of a State base
map on which the outlines of published geologic maps
and identifying numbers are superimposed (Fulton and
MclIntosh, 1977). Figure 1 shows a map sheet from the
published index for the State of Kentucky.

2 GEOINDEX

8 éﬂ 86

FIGURE 1.-Sheet from the published Kentucky index, showing geologic maps

The text material is composed of bibliographic
references, each of which is numbered to correspond to
the number on the matching map outline. Figure 2
shows part of a sheet of bibliographic text from the
published index for the State of Kentucky.

Each index, then, contains the map outlines and
bibliographic references for published geologic maps for
one State. The reports are published in black and white
and folded to a size that fits the standard file cabinet.
Because the computer-based operations have introduced
economies, geologic map indexes are distributed free to
the public.

A second purpose of a data base in machine readable
form is to furnish outside users a rapid access to all

items contained in the data base. This second function is
required by a more specialized group of outside users.
For example, some specialists in the Earth sciences
have active projects and need immediate answers to
their questions. Typically, the procedures involve the
retrieval of selected items from the data base, followed
by a series of manipulations, and finally a display of
various combinations of text and graphics. Alternative-
ly, some outside users whose projects are still in the
planning stage need information that is contained in the
data base but does not appear on the published geologic
index map. To satisfy the two types of users, both text
and map data are available online from the computer
system. Aspects of this type of usage of the data-base

THE DATA-BASE MANAGEMENT SYSTEM
Y AN MR e =
* el EETEL e ryr_ e A S HER ~ «:’7
F:*_)-'v A3 :“H\ﬁ; :{* Ly 0.;4‘**4'70:**-** T W i : i : .
743
: -7uy
16 _ 85 8y 83 82

whose scales range from smaller than 1:63,360 through and including 1:250,000.

management system are discussed later, under Storage
and Retrieval System.

A third purpose of the data-base management system
is to provide nationwide information to policy makers.
Under this concept, one can access the data base as a
single entity covering the entire United States instead
of accessing merely one State at a time. The system can
present a comprehensive overview of the whole country,
but all the details shown on State maps are still avail-
able. For example, the total area for which geologic
maps are available in the United States can be com-
puted. Such statistics are valuable for national planning.

To fulfill these requirements, the geologic map index
exists in two very different forms: as computer files in
the Geoindex data base, and as published reports. An ad-

ditional reason for having two different forms is that as
soon as data have been stored in a computer, new appli-
cations become feasible. As a result, computer resident
data files serve a much larger community of users than
previously imagined. Because the data files are in digital
form, they become multifunctional in that retrievals
from the files can assume totally different appearances.
These additional capabilities more than justify the initial
cost in creating machine readable map files.

GLOSSARY AND SYSTEM STRUCTURE

A technical dicussion of the data base structure first
requires the definition of some of the terms (Honeywell
Information Systems, Inc., 1978).

4 GEQINDEX

1. Data base. An integrated collection of data upon
which operations (such as read, write, and revise)
can be performed.

2. Data-base management system. A software
system that accesses an integrated collection of
data.

3. User. A person who retrieves, updates, or deletes
data within the data base. Such a person actively
maintains the data base.

4. Qutside user. A person who retrieves data from the
data base. This is a person who uses the system
but does not maintain it.

5. Data model or schema. The description of the data
base that defines the characteristics and organiza-
tion of the data within the data base.

The Geoindex data base is a relational data base and is
derived from the mathematical theory of relations. The
Geoindex Data Base Management System is a relational
data-base management system. This structure is a
natural consequence of having the Geologic Retrieval
and Synopsis Program (GRASP) as the primary storage
and retrieval program of the system because GRASP
organizes data in relational form. GRASP is discussed
more fully in the section entitled Storage and Retrieval
System. The relational form is essentially a matrix com-
posed of the familiar rows and columns.

The mathematical terminology specific to a relational
data base must also be defined:

6. File. A collection of organized data, a relation.
7. Record. A representative “row” of data, a tuple.
8. Attribute. Name of a data field within a record, a
column of information.
9. Attribute value. Value of a data field within a
record.
10. Domain. The set of all values a data field may
assume.
11. Data submodel. User’s definition of the data base.
12 Data model. Total definition of the data base.

A relational data base is in matrix form where the
tuples (records) constitute the rows and the attributes
(data items) constitute the columns. All tuples within a
given relation have the same format (all records within a
file have the same format). This last statement is a
definitive characteristic of a relational data base.

The Geoindex is both large and complex. Size, of
course, contributes to complexity, but the major source
of complexity is the nature of the data that the system
must process. The data comprise two distinct types: text
and graphics. A record (“row,” definition 7) exists for
each map. The attribute values (columns, definition 9)
are composed of text data derived from the bibliographic
reference and of graphic data derived from the map out-

line. See figures 1 and 2. The complete list of attributes
handled by the data-base management system is shown
in figure 3.

The data-base management system is functionally
divided into four parts. The first part is composed of
computer programs and procedures designed to per-
form two vital tasks. The first task is to capture and
verify the data. The second task is to create the map
sheets and bibliographic text sheets as camera copy
ready for reproduction. The first part of the system will
be discussed in the section Data Acquisition and the sec-
tion Publication Copy. The second part of the system is
composed of computer programs and procedures that
have one task to accomplish. This part of the system
loads the data as relations into files that are accessible to
GRASP, the storage and retrieval program. The third
part of the system consists of GRASP and several plot
programs. This third part is described in the section
Storage and Retrieval System. The fourth part of the
system consists of computer programs and procedures
that insure the safety and integrity of the data by pro-
viding backup files and permanent archival data
storage.

The system flow chart, illustrated in Appendix A,
shows the chronological work flow that is virtually iden-
tical with parts one through four mentioned.

DATA ACQUISITION
TEXT DATA

The text data for an individual State are received in
draft form, which is somewhat similar to that shown in
figure 2. Each draft is examined, and a list of questions
is prepared to cover any errors, omissions, or ambig-
uities that would slow the actual data-entry process.
This list is returned to the geologist who compiled the in-
dex map and who then clarifies the uncertainties. After
questions are answered and this list is returned, the
physical keying of the text begins. The attributes, or
record items, entered at this time are listed as follows:
Identification number, author, year, title, publisher,
county or region, emphasis, scale, and series.

The text material is prepared offline in card-image
form on key-to-disk devices. These are word-processor
computer terminals, which function both as stand-alone,
offline, data-entry stations and as communications ter-
minals. Several types are available; however, each hard-
ware unit includes a keyboard for data entry, a cathode
ray tube (CRT) screen that displays the characters
entered from the keyboard and messages sent from a
computer, and dual flexible disks that store data. Line
printers, some switch-selectable among the units, supply
the necessary hard copy.

Swadley, W.C., 1972,

Geologic map of paris
of the Lawrenceburg,
Aurora, and Hooven
quadrangles, Boone
County, Kentucky: U.S.
Geol. Survey Geol.
Quad. Map GQ-989.
1:24,000,

Gibbons, A.B., 1972,

Geologic map of parts
of the Burlington and
Addyston quadrangles,
Boone County, Kentucky:
U.S. Geol. Survey Geol.
Quad. Map GQ-1025.
1:24,000.

Luft, S.J., 1971,

Geologic map of part of
the Covington
quadrangle, northern
Kentucky: U.S. Geol.
Survey Geol. Quad. Map
GQ-955. 1:24,000.

Gibbons, A.B., 1973,

Geologic map of parts
of Newport and
Withamsville
quadrangles, Campbell
and Kenton Counties,
Kentucky: U.S. Geol.
Survey Geol. Quad. Map
GQ-1072., 1:24,000.

Swadley, W.C., 1971,

Geologic map of part of
the Rising Sun
quadrangle, Boone
County, Kentucky: U.S.
Geol. Survey Geol.
Quad. Map GQ-929.
1:24,000,

Swadley, W.C., 1969,

Geologic map of the
Union quadrangle, Boone
County, Kentucky: U.S.
Geol. Survey Geol.
Quad. Map GQ-779.
1:24,000.

Luft, S.J., 1969,

Geologic map of the
Independence
quadrangle, Kenton and
Boone Counties,
Kentucky: U.S. Geol.
Survey Geol. Quad. Map
GQ-785. 1:24,000,

Gibbons, A.B., 1871,

Geologic map of the
Alexandria quadrangle,
Campbell and Kenton
Counties, Kentucky:
U.S. Geol. Survey Geol.
Quad. Map GQ-926.
1:24,000,

THE DATA-BASE MANAGEMENT SYSTEM

9.

10.

11.

12.

13.

14,

15.

16.

Gibbons, A.B., Kohut,

J.J., and Weiss, M.P.,
1975, Geologic map of
the New Richmond
quadrangle,
Kentucky-Ohio: U.S.
Geol. Survey Geol.
Quad. Map GQ-1228.
1:24,000,

Kohut, J.J., Weiss, M.P.,

and Luft, S.J., 1973,
Geologic map of the
Laurel quadrangle,
Ohio-Kentucky: U.S.
Geol. Survey Geol.
Quad. Map GQ-1075,
1:24,000.

Swadley, W.C., 1969,

Geologic map of parts
of the Patriot and
Florence quadrangles,
north-central Kentucky:
U.S. Geol. Survey Geol.
Quad. Map GQ-846.
1:24,000,

Swadley, W.C., 1969,

Geologic map of the
Verona quadrangle,
north-central Kentucky:
U.S. Geol. Survey Geol.
Quad. Map GQ-819.
1:24,000.

Luft, S.J., 1973,

Geologiec map of the
Walton quadrangle,
north-central Kentueky:
U.S. Geol. Survey Geol.
Quad. Map GQ-1080,
1:24,000.

Luft, S.J., 1970,

Geologic map of the De
Mossville quadrangle,
north-central Kentucky:
U.S. Geol. Survey Geol.
Quad. Map GQ-862,
1:24,000,

Luft, S.J., 1972,

Geologic map of the
Butler quadrangle,
Pendleton and Campbell
Counties, Kentucky:
U.S. Geol. Survey Geol.
Quad. Map GQ-982.
1:24,000,

Luft, S.J., Osborne,

R.H., and Weiss, M.P.,
1973, Geologic map of
the Moscow quadrangle,
Ohio-Kentucky: U.S.
Geol. Survey Geol.
Quad. Map GQ-1069.
1:24,000.

Osborne, R.H., Weiss,

M.P., and Outerbridge,
W.F., 1973, Geologic
map of the Felicity
quadrangle,
Ohjo-Kentucky: U.S.
Geol. Survey Geol.
Quad. Map GQ-1063.
1:24,000.

Outerbridge, W.F., Weiss,

M.P., and Osborne,
R.H., 1973, Geologic
map of the Higginsport
quadrangle,
Ohjo-Kentucky, and part
of the Russellville
quadrangle, Mason
County, Kentucky: U.S.
Geol. Survey Geol.
Quad. Map GQ-1065.
1:24,000,

Palmquist, W.N., Jr., and

Hall, F.R., 1960,
Geologic map of Boone,
Campbell, Grant,
Kenton, and Pendleton
Counties, Kentucky:
U.S. Geol. Survey
Hydrol. Inv. Atlas
HA-15. Map 1,
1:125,000.

Hall, F.R., and

Palmquist, W.N., Jr.,
1960, Geologic map of
Carroll, Gallatin,
Henry, Owen, and
Trimble Counties,
Kentucky: U.S. Geol.
Survey Hydrol. Inv.
Atlas HA-23. Map 1,
1:125,000.

Swadley, W.C., 1976,

Geologic map of part of
the Carrollton
quadrangle, Carroll and
Trimble Counties,
Kentucky: U.S. Geol.
Survey Geol. Quad. Map
GQ-1281. 1:24,000.

Swadley, W.C., 1973,

Geologic map of parts
of the Vevay South and
Vevay North
quadrangles,
north-central Kentucky:
U.S. Geol. Survey Geol.
Quad. Map GQ-1123.
1:24,000.

Swadley, W.C., 1973,

Geologic map of the
Sanders quadrangle,
north-central Kentucky:
U.S. Geol. Survey Geol.
Quad. Map GQ-1095.
1:24,000.

FiGURE 2. —Part of a sheet of bibliographic references taken from the published Kentucky Index.

GEOINDEX

Each map is uniquely identified and has the following

list of attributes:

Mnemonie Attribute

id identifying number for the
bibliographic reference

state name of the state

author authors

year year of publiecation

title title

county county or region

publish publisher

series title of publication series

emphasi type of geology - surficial, economic,
stratigraphic, oil, gas, coal, metal

area area covered by map

aunit dimension for area, generally square
kilometers

nlat extreme north latitude

slat extreme south latitude

wlong extreme west longitude

elong extreme east longitude

clat center point latitude

clong center point longitude

omaps other maps not included as outlines,
i.e., title

avail depositories where maps can be
obtained

base USGS topo, DMA-TC topo, photomosaice,
shaded relief

geology only geology shown on the map

plate plate or map or sheet identification

idstate FIPS state code

scale map scale - 1:24,000, 1:250,000, etc.

idsub sub id number, i.e., more than one map

ibound id number on the boundary outline
ties together text and graphie or
x,y files

ispan secondary number on the boundary
outline further ties text to graphic
file

othermap phrase used in Bibliography

FIGURE 3. - List of attributes (names of data fields) that constitute a record.

After a line of text data is entered on the keyboard, it
is stored on the diskette. At the option of the operator,
the data are simultaneously listed a line at a time on the
printer or listed all together at the end of a session. This
printer list is then checked for errors. The operator cor-
rects data by using a key-to-disk technique. When text
data are as error free as possible, the data-entry devices
are operated as computer terminals, and the data are
transmitted directly from the diskette to permanent
storage on a large host computer.

MAP DATA

The map data, as previously mentioned, are the
outlines of published geologic maps. These map data are
received from the geologist as ink or colored-pencil
outlines overlaid on base maps. The base maps consist of
green-line images printed on dimensionally stable
plastic.

The computer group codes a matching base on a stable
material in preparation for the digitization of county

THE DATA-BASE MANAGEMENT SYSTEM 7

outlines. These codes are the digits assigned to each
county and State by the Federal Information Processing
Standards Publications (FIPS PUBS). This digitization
or conversion from graphics to machine-readable code is
done manually on a type of drafting-table digitizer with
a resolution of 0.025 mm (0.001 in.) (Fulton, 1975).

The lower left-hand corner of the neat line is
designated as the origin, so that the entire map lies
within the positive quadrant in the Cartesian coordinate
system.

Only the end points of straight-line segments are
recorded. Where the outlines are extremely convoluted,
stream digitizing is performed and the spacing between
points is generally about 1 mm (0.04 in.). The data are
plotted for verification. Because of the complexity of the
index maps, these plots must be drawn in different col-
ors so that each outline and its identifying number is
distinct.

PUBLICATION COPY

After the computer-generated plots for the Geoindex
are judged acceptable, they need further processing to
create the final version of the maps. The first few
published indexes were drawn in black ink by means of a
drum plotter. Several different pens created the various
line weights so that overlapping areas could be
distinguished.

Index maps convey information concerning areas.
Shading portrays areal information very effectively.
Thus, those who prepared the later maps took advan-
tage of the newer technology inherent in a matrix plot-
ter. Such a plotter now generates the final maps. This
plotter has a resolution of 160 dots per inch and an effec-
tive plotting width of 18 in. To date, 10 different pat-
terns supply sufficient contrast so that various mapped
areas may be distinguished from one another. See figure
1, which shows a Kentucky map sheet listing the maps
that range in scale from 1:63,360 through 1:250,000.

At the same time that the map plots are generated,
the text data are processed. The file is in a machine-
readable form almost identical with card-image form,
but the final output must be in the traditional
bibliographic form. This change is accomplished by pro-
cessing the text data file through programs resident on
a main-frame computer that strip out the extraneous
data and codes and rearrange the order of the attributes
(items). Then the modified file is transmitted over
telephone lines back to the word-processor terminal.
The final manuscript is printed on coated paper
automatically. The map plots and text material are then
sent for photographic reduction, a process that creates
the photographic plates for mass production. See figure
2, which shows a copy of part of a sheet of text data from
the published Kentucky index.

STORAGE AND RETRIEVAL SYSTEM

This storage and retrieval system is the Geologic
Retrieval and Synopsis Program (GRASP), written and
developed within the Geological Survey by Roger W.
Bowen and Joseph Moses Botbol (1975). GRASP is used
extensively within the U.S. Geological Survey. It has
also been installed on the computers of national agencies
of several countries in South America and Europe.

The GRASP system implements searches of the text
files by individual items or by any combination of two or
more items. All the references for the published geologic
maps that meet the search criteria are retrieved. The en-
tire contents of all the retrieved text records can be
listed, or only one or two items can be selected.
However, the boundary identification number, ibound,
the bibliographic identification number, id, and the
subidentification number, idsub, are the only items re-
quired to generate a graphic image. Thus, the numeric
value of these three items are listed on a formatted disk
file for subsequent plotting. The GRASP system is ex-
ited and the plot program pn16 is invoked. This pro-
gram, too, executes in an interactive mode. Its options
provide for plots of the State outline, the graticule, the
county boundaries in solid or dotted lines, and, of
course, the file of geologic-map outlines. These graphics
can be plotted interactively on a CRT terminal and then
printed by a hard-copy unit attached to the terminal.

After a map has been drawn on the CRT, information
from other files may be added by direct overlay to the
original graphic on the screen. In addition to the
features already described, this program offers the op-
portunity to enlarge any part of the plot repetitively un-
til a cluttered area becomes readable.

At present, the newly published geologic index maps
are categorized according to scale. The retrieval can be
executed in GRASP by designating the proper scale as
the search criteria and querying the file. This first step
in map generation from digital data is accomplished in-
teractively on a graphics CRT terminal. This same file,
which has been plotted interactively, can then be
directed to a drum plotter for reproduction at the
original scale. Figure 4 shows the maps published at
scales smaller than 1:63,360 for the State of North
Dakota as drawn on the CRT screen.

Several other programs enable a user to plot the en-
tire United States. The programs take geographic coor-
dinates from either a GRASP retrieval or directly from
the map-data files. These programs convert the
geographic coordinates to Cartesian coordinates. Then
another plot program entitled pin90 operates in an in-
teractive mode similar to that of pn16 to plot these files.
1t, too, has options for specifying various combinations
of files and enlarging designated areas. Figure 5 shows
a CRT plot of some areas covered by published maps.

GEOINDEX

u9ads LY 8yl Jo ydeagojoyd e st eandy oy, '09¢‘¢9: T Uey) Jo[eus safess je paysijgqnd sdew 0130003 Suimoys ‘ejoxe YdoN Jo 97838 oy3 105 30[d LY — § dUNDI]

6 86 E6 (1]/) ¢ ToT 2oy toT vol
11 | —_—
10€E *
ﬁ)ﬁ
1ays] 1oL [1es
10221 Lw _ 102
! m_.J 20kg]
1o 19
m X 70
ﬂ, 10011
101
"
1405
Ny 2l-
f NI
J
1096 g ‘
|
100% ﬁ
1ov1
106
10971
10801
14-1d 1456
| / e

THE DATA-BASE MANAGEMENT SYSTEM

"u9aads TN oY1 Jo ydeidojoyd e st oanyg “sdew o1ojosS paysignd Aq pa1oaod seade dWOS SMOUS JeY) So3eIS PajIu[) Y3 Jo jo[d LYD -G TUNDI

10 GEOINDEX

The system also utilizes some machine-independent
plotting packages that were obtained specifically to pro-
vide diversity of output for the Geoindex as well as for
the entire U.S. Geological Survey. Figure 6, which il-
lustrates geologic mapping on a regional basis, is a map
showing all the areas covered by geologic maps in the
western States of Idaho, Nevada, and Arizona.

The storage and retrieval part of the Geoindex system
has the capability of providing nationwide summary in-
formation to policy makers. Examples of maps that pre-
sent information of special interest to national planners
are shown in figures 7 and 8. Both of these maps were
generated from queries to the Geoindex and show
geologic mapping on a national basis. These maps
reflect the data resident in the data base at the time of
query. Figure 7 shows the areas in the United States
covered by geologic maps that were published at a scale
of 1:250,000 after 1960. It includes both U.S. Geological
Survey maps and non-Survey maps. Figure 8 shows
geologic maps from all sources that were published at
scales larger than 1:250,000.

DATA BASE
STRUCTURE OF THE DATA
TEXT DATA

As previously mentioned, the Geoindex comprises two
distinct types of data: text and graphic. These two data
types are handled separately throughout most of the
system because of their dissimilar nature. After the
bibliographic data are captured as keystrokes of coded
data in digital form, they are usually called text data.

Initially, the text data in machine-readable form look
very much like a listing of ordinary punched cards. The
most obvious difference is that a printed line contains
both uppercase and lowercase characters. Actual data
fields vary from 4 to 60 characters. The Geoindex data
base is generated on a State-by-State basis. Each State
carries the two-digit code assigned by FIPS PUBS.
Every file name for a particular State contains this same
numeric code as a suffix. The leading three or four
characters of the file name are descriptive of the type of
data in the file. Thus, the initial reference data file for
Colorado is named ref08.

The format for the text data is as follows:

State identification 2 digits.
Reference number 4 digits.
Item number 2 digits.

Informational data 4 to 60 characters.

Figure 9 shows the text data for reference number 90
(a record in file ref08) for the State of Colorado as it
looks in its initial form. This is a reference that contains
four separate maps, and it was chosen to illustrate the
complexities of the data structure.

MAP DATA

As stated earlier, the map data are digitized as Carte-
sian coordinates in the positive quadrant. These coor-
dinate files are structured so that several different types
of map data are compatible and are handled efficiently
within the one system. The two major types of graphic
data are the index-map coordinates and the base-map
coordinates. The base-map coordinates consist of
political boundaries, such as State and county, and also
the geographical positions of the graticule. One
bibliographic reference may contain several maps, one
map, or no map at all. Conversely, one map outline,
typically a county, may be identified by a great number
of bibliographic references. A unique identifier for each
map is mandatory and is a combination of three at-
tributes. A primary identification number (id), a secon-
dary identification number (idsub), and a third number
(second idsub) insure uniqueness. The data for each
map outline are composed of two different parts. The
first or header section under a format of (8I5) consists of
number codes for the various map features. The
features and the feature codes are listed as follows:

1. Identification or feature number (id): neatline = 900,
State = 9INM (NM refers to FIPS code for the par-
ticular State)

2. Number of outlines that have this id

3. First subfeature: adjacent county id number, adja-

cent State = 9NM, national boundary = 993, lake
boundary = 995

Number of points

Second subfeature number

State id number

Graticule = 991, county = 992, island = 994 (values

recorded only for grid, county, and islands; blank
for others)

8. Span-—that is, one map outline for several references

The second part of the record has a format of (12F6.3)
and contains the string of Cartesian (z, y) coordinates
that define the boundary of the published geologic map.
The first Cartesian pair indicates the position for the
identifying number. A listing of both parts of the Carte-
sian coordinate data record for reference number 90 for
the State of Colorado is shown in figure 10.

NS o

TEXT AND MAP DATA

After the data are in digital form, only the map file
(fig. 10) contains the information that can be used to
complete the record, the list of attributes named in
figure 3. The area covered by each geologic map is com-
puted from the Cartesian coordinates, and that informa-
tion is then stored along with the unit of measurement
(currently square kilometers). All Cartesian coordinates

REFERENCES CITED 11

are also transformed into latitude and longitude and
stored as radians. The header cards for the radian files
are identical with the header cards for the Cartesian
coordinate files. The data are in card-image form with a
format of (6F'12.9,18). The decimal point is implied in the
data files so that there are three latitude-longitude pairs
per card image with space for sequence numbers. Figure
11 shows the radian data for reference number 90 for
Colorado. The names of the files are similar.

Using the radian values, a program determines the
maximum latitude and longitude for the four directions
and then stores each map outline. The center of each
map outline is computed in radians and is stored. The
data-base management system performs these and
other computations. The items listed above, derived
from the map data, are merged into the record, or tuple,
so that a complete record for each map contains all the
information shown in figure 3. These two files, text and
graphic, are compared to ensure that each reference is
identified by the correct outline. Figure 12 shows a text-
data record in its complete form. It represents the final
form for reference number 90 for the State of Colorado.
These text data correlate with the map-coordinate data
shown in figure 10. The data shown in figure 12 are in
the format required for the storage and retrieval
system.

Twelve files are stored permanently on two sets of
magnetic tapes. Each magnetic tape contains the data
for five States. Figure 13 describes and identifies these
files.

SYSTEM SPECIFICATIONS

The detailed system specifications are given in the ap-
pendixes. Appendix A contains the system flow chart,
which also shows the input and output files. Appendix B
contains the operational instructions, which detail the

minimum set of information needed to execute the pro-
grams,

Appendix C contains the computer-program reference
guide. This guide gives complete descriptions of the
computer programs and listings of the source code for
each program. Appendix D contains the formats and
notes needed for data entry.

STATUS OF THE SYSTEM

The data-base management system has passed the
operational phase and is a fully functional system. The
primary objective, the generation of geologic index
maps, is in a production mode, and the data base is
growing daily. Figure 14 is another computer graphic
that summarizes the present status of the Geoindex. The
system automatically generates a new status map at the
beginning of each month. The files can be accessed in an
interactive mode, and personalized index maps plotted
immediately, as shown in figures 4 and 5. The system
becomes increasingly useful as a tool for policy makers
as more States are added to the data base. Figures 6, 7,
and 8 show summary maps that can be of value in mak-
ing policy and plans.

REFERENCES CITED

Bowen, R. W., and Botbol, J. M., 1975, The Geologic Retrieval and
Synopsis Program (GRASPY: U.S. Geological Survey Professional
Paper 966, 87 p.

Fulton, P. A., 1975, Mapping and Computers, in Rubinoff, Morris, and
Yovits, M. C., eds., Advances in Computers, v.13: New York,
Academic Press, p. 73-108.

Fulton, P. A., and McIntosh, W. L., 1977, Computerized Data Base for
the Geomap Index: The American Cartographer, v. 4, no. 1, pp.
29-317.

Honeywell Information Systems, Inc., 1978, Level 68 Software
Multics Relational Data Store (MRDS) Reference Manual, p. 1-1,
2-3.

GEOINDEX

12

"BUOZLLY pU® ‘BPRASN ‘OUBp] JO S91B)g aY) Ul paysiqnd usaq aaey sdew o130[0a3 yorym IoJ seade syj [[& Suimoys 10{d —'9 TuNOI

]| b

ot .—MW [| 2y ﬁ/
0 i q_
el
U! o —
2% ")Mrl_ .
15 0
D o — 5 mw
I - _f lﬂ_uﬂu - «\\A/_%l /.
o F b
| |o T,
e o]
g
9¥ lﬁm m\ﬁ
N
I
8y ﬂ -
[%n
801 orT Z0 ¥ gl CI 021 Ze!

oy

r44

144

9%

8¥

40

GEOINDEX

40

-
o ’__‘\‘ '_}:_2
P THY Gt
D EREEYEE
) 5 0 O,
N ”J \L«u ad Df =
] +
N [
= ° ‘}D
qCJ
e s, L
g = e T=gl
R
o | | 0
e 3 0
M l. g] .= -
\L « -
7,

13

FiGure 6. -Continued.

GEOINDEX

14

107°

URE 7.~ Plots from the on-line data base showing maps published after 1960 in the United States

3

Fic

15

GEOINDEX

250,000. This plot includes both U.S. Geological Survey maps and non-Survey maps.

atascale of 1

GEOINDEX

16

P PR

FIGURE 8.~Plots from the on-line data base showing geologic maps published from

17

GEOINDEX

87°W

all sources, U.S. Geological Survey and non-Survey, at scales larger than 1:250,000.

18

90 2Colorado
90 3Atwood, W.W.
90 81918

9010sites

9017U.S. Geol.
901848000
901925000
902093750
902184480
9023Bull. 685.
9024engineering
9038geology
9039Fig. 3,
9040tig. 4,
9041fig. 6,
9042tig. 7,
9044 8

90451

90462

90473

90484

90509001
90519002
90529003
90539004

Q0 00 00 00 O0 OO0 OO OO 00 OC OC OC OC CO CO OO QO 0O Q0 00 OO 00 QO QO OC OC 0o OO

GEOINDEX

la plata

9086Also detailed maps.

90 Y9Relation of landslides and glacial deposits to reservoir
in the San Juan Mountains, Colorado:
9012mineral, hinsdale,
Survey

Ficure 9. —Partial list of text data showing attribute values, in initial (card image) form, for reference number 90, Colorado.

90 4 1 6 8 0 0

6232 3662 6162 3979 6689 3947 6677 3597 6146 3615
90 4 2 2 8 0 0

6700 3683 6627 3765 0 0 0 0 0 0
90 4 3 6 8 0 0

6650 4088 6570 4421 7015 4403 7005 4025 6558 4022
90 4 4 6 8 0 0

7133 4248 7104 4142 7374 4136 7379 3804 7098 3803

F1GURE 10. - Map data in Cartesian coordinates for reference number 90, Colorado.

90 4 1 6 8 0 0

-1873730163 0658147465 -1874116297 0659414456 -1871448603

-1871476238 0657921102 -1874159720 0657951797 -1874116297
90 4 2 2 8 0 0

-1871368160 0658268095 -1871744737 0658591828
90 4 3 6 8 0 0

-1871659176 0659890362 -1872095935 0661221254 -1869840993

-1869857850 0659663364 -1872118161 0659618394 -1872095935
90 4 4 6 8 0 0

-1869229955 0660567668 -1869367424 0660140064 -1868000881

-1867947965 0658801627 -1869368043 0658778571 -1869367424

FIGURE 11. - Map data in radians for reference number 90, Colorado.

6162 3979
0 0
6570 4421

7104 4142

0659327192
0659414456

0661181741
0661221254

0660134288
0660140064

GEOINDEX
90Colorado Atwood, W.W.,

1918Relation of landslides and glaci
al deposits to reservoir sites in the San Juan Mountains, Colorado:

mineral, hinsdale, la plata

U.S. Geol. S

urvey Bull. 685.
engineering 123.5 5q.
km. 3746053 3741045 10722053 10713033 3744017 10718016
geology Fig
. 3, 848000 1 9001 Also detailed maps.
90Colorado Atwood, W.W.,

1918Relation of landslides and glaeci
al deposits to reservoir sites in the San Juan Mountains, Colorado:

mineral, hinsdale, la plata

U.S. Geol. S

urvey Bull. 685.
engineering
3744004 3744004 10714035 10714035 3744004 10714035
geology fig
. 4, 825000 2 9002 Also detailed maps.
90Colorado Atwood, W.W.,

1918Relation of landslides and glaci
al deposits to reservoir sites in the San Juan Mountains, Colorado:

mineral, hinsdale, la plata

U.S. Geol. S

urvey Bull. 685.
engineering 113.2 sq.
km. 3753006 3747036 10715052 10708002 3750022 10712000
geology fig
. 6, 893750 3 9003 Also detailed maps.
90Colorado Atwood, W.W.,

1918Relation of landslides and glaci
al deposits to reservoir sites in the San Juan Mountains, Colorado:

mineral, hinsdale, la plata

U.S. Geol. §

urvey Bull., 685.
engineering 60.5 sq.
km. 3749023 3744042 10706024 10701031 3747003 10704002
geology fig
.7, 884480 4 9004 Also detailed maps.

Figure 12.-Complete text-data record for reference number 90, Colorado. This shows the data in the format required by the
storage and retrieval system.

19

20

Description

GEOINDEX

Files in Permanent Storage

of file Name of file Name of file Name of file
File is File is File is
composed composed composed
of of of
alpha-numeriec Cartesian latitude and
data coordinates longitude
in radians
Identification file bginNM
written on tape for
each State. It names
all the files that
follow belonging to
that State
Outlines of maps shown coorNM cor dNM
on the index
State outline statNM s trdNM
County outlines counlNM cur dNM
Graticule gr idNM
Neat line bordNM
Centers of map entrNM
outlines
Parameters used to paraNM
transform Cartesian
coordinates to
geographie coordinates
for each State
Final form of the text redyNM

files

NM i

s the FIPS code for each State

Ficure 13. Table showing names of files in permanent storage.

APPENDIXES: SYSTEM SPECIFICATIONS

APPENDIX A. SYSTEM FLOWCHART
APPENDIX B. OPERATIONAL INSTRUCTIONS
APPENDIX C. COMPUTER-PROGRAM REFERENCE
APPENDIX D. FORMATS AND NOTES
Note:
Program and subroutine names are printed in bold sans-serif type: chkref.
Variable names are printed in italic sans-serif type: itype.

Permanent-file names are printed in sans-serif type: matrix.
Ordinary variables are printed in italics: x, y.

APPENDIX A

APPENDIX A. SYSTEM FLOWCHART

COMTAPE. EC
1 digitized text > REFom
te Multics
Y
CHKREF
IP:IE"\:::'X > check text > REFnm
for errors
Y
MATRIX GEOFMT
REFnm format text for final
Bibliographic oo
style Bibliography
REFom >— CONCAT
format text ->— STRGnm
for GRASP
\
LIST_TAPE_CONTENTS
| TAPE_IN. TCL
digitized maps CORDnm
inte Multics >| CURDnm
STRDnm
V PARAANM
Bonthm TAPEDWG
| map files on tape COORnmDW
GRIDnm - A
te digitizer BORDnmDW
STATnm AR
COUNnm drawing files > GRIDnmDW
STATomDW
‘} COUNnmDW
Pilot drawing
files on
Calcomp
Y
COORnmDW > DWGDISK
drawing files to >»— COORnmAS
ascii disk files
\
TFILES | | SELDISK
COORnmAS | separates ascii REDm
disk file and > BLUEnm
creates a drawing 'l GREENnm
file for each
map

26

GEOINDEX

plot map
separates

Y

Y

Y

BORDnmDW DWGTAPE
GRIDnmDW drawing file to
STATnmDW card image tepe
COUNnmDW | format for transfer
REDnm to Multics
BLUEnm
GREENnm

VERSATEC. EC

copies files

from DWGTAPE

into Multics

[
ggl'l')"""' l INDEX_VERSATEC
ST AT':::I | creates tepe for
COORnm versatec plotter
PVERnm
\

VERSATEC PLOT

tape created by

Index_Versatec is

plotted on versatec
REDnm I Multics
BLUEnm > Copy-Merges
GREENnm | COORnm Files

V

SORT. VERS. COOR. EC
runs:
PGM1. VERS. EXTHDR
SORT_SEG

PGM2. VERS. SEQUENT

PGM3. VERS. MERGE

|

COORnm. UNSORT —————={

PGM?. VERS. EX'

BORDnm
GRIDnm
STATam
COUNnm
REDnm
BLUEnm
GREENnm

BORDnm
GRIDnm
STATam
COUNnm
REDnm
BLUEnm
GREENnm

Plot on versatec

———> COORnm. UNSORT

THDR,
creates a file of —————3>— COORnm. UNSORT. HDR

header card images

APPENDIX A

COORnm. UNSORT. HDR ——>{ SORT_SEG

systemsotto | 5. coQRnm. SORT. HDR
put headers into

ascending order

|

COORnm. UNSORT —————— PGM2. VERS. SEQUENT
converts file from ——>—COORnm. SEQUENT

stream to sequentiel

[

COORnm. SORT. HDR PGM3. VERS. MERGE
merges coordinates > COORnm
COORnm. SEQUENT into one ordered

]

COORnm MASTER
STATam 1 calculates areas | MEASnm
AREANO :n":',“"';:’ using | AREARM
nm files lCNTan
DOUBT
f
STRDnm > STATE_OPTIMA

calculates max & ————|isting
min ¢, Afor each
state

[

MEASnm ADDRAD
STRGam > inserts map data REDYnm
CORDnm into text files >~ COMXnm
CTRDnm
Y
REDYnm COVERT. EC
HEAFSNK runs convert to o g:gﬁx o
DICN load Grasp FILE 15
INDEX0
_ [
INDXnm GR. EC
MASK | seerches Gresp files E:
DEFN ~| excutes files for 3 T3P
DICN map plots

28

BORDam
GRIDnm

GEOINDEX

INPLOT. EC

STATAm
COUNnm
COORnm
SKOD
TP

T2P

T3P

COORnm
COMXnm
STATnm

using PN16

Y

BIGSTA
Computes
statistics on

STRDam
CORDam
COUNnam
CURDam
CNTRnm
GRIDAm

CNTRam
CTRDnm

AREAnm
REDYnm

MEASam
BORDnm

PARAnm

INDXUS |

Y

existing files \

plots 3 maps ————> 3 map plots

listing

INDXnm |

BORDnm
GRIDnm

STATAm
STRDAm
COUNnm
CURDnm
COORnm
CORDnm
CNTRam
REDYnm
PARAnm

STORED

Y

PULL_OFF

FILES

Copies specified
files from tape

——>— STORED FILES

[toCPU |

USMERG. EC

appends a single

U.S. file on ———————> INDXUS

Grasp

Y

STATE_TO_TAPE BGINnm

Places data on .| BORDam

magnetic tape for gal.’r:"“‘l

permanent storage STROnm
COUNnm |, STORED
CURDnm FILES
COORnm
CORDam
CNTRnm
REDYnm
PARARM _|

APPENDIX B

29

BACKUP. EC
INDXUS > Stores the Indxus
files on tape
Y
RETRIEVE. EC
RESTORE
Copies files from |———— STORED FILES
tape to CPU which
were written by
BACKUP. EC
STATPM Y
STATS0 VERPLOT
RAWAH Versatec piot of > STATUS MAP
PUERTO RICO status map
ALASKA
Y
STAT90. PAT PN9%0
GRASP FILES I > plots entire Us > PLOT ON TEKTRONIX
on CRT

APPENDIX B. OPERATIONAL
INSTRUCTIONS

HOW TO RUN COMTAPE.EC ON MULTICS

Purpose of the program: comtape.ec allows the user to
read the tapes containing digital text in ASCII code
from outside sources into the Multics system.

Input files: Any outside tape
Output file: Segment named by the user

To run the program.:

A. Label tape “for Multics use,” and forward tape to be
processed to production control.
B. Send a message to sys op asking him to locate tape
nuRANN.
Example: sm sys op Please locate tape
nuRnnNNn
C. After you have been notified that the tape has been
found, type:
ec comtape nnnnnn SEGNAME
where nnnnnn is the 6-position volume name, and
SEGNAME is a name the user wishes to call the
file, for example, ref21.
D. You will be informed when the tape is mounted and
the tape drive on which it is mounted. You will also

receive a count number of the records copied into

SEGNAME. This file will automatically be

dprinted.

Example: copy_file -ids “tape_ibm_&1 -nlb -nb 2
-fmt fb -den 800 -rec 80 -bk 800” -ods
“record__stream__-target vfile_&2” dp &2

E. The tape number will be substituted for the &1. The
SEGNAME given by the user will be inserted
where &2 appears.

HOW TO RUN CHKREF ON MULTICS

Purpose of the program: chkref reads through a
reference file refNM and checks for various errors
that might occur.

To run the program.:
A. Before running chkref, you must link to it. Type:
Ik >udd >Geoindx >HJohnson > chkref
lk >udd >Geoindx > HJohnson > matrix
After the first link, you can run it without linking
again.
B. Type: chkref
C. When asked for the file name, type in the name, such
as, ref98

30

D. Study any error messages that chkref gives, make
corrections to the reference file, and run chkref
again until no error messages occur.

HOW TO RUN GEOFMT.EC ON MULTICS

Purpose of the program: geofmt.ec executes a series of
commands and programs to read the reference file, to
extract selected data, to arrange it in a predetermined
order, and to create a columnarized output segment
ready for printing.

Linking: Before running for the first time, you must link
to the following segments:

lk > udd >Geoindx>PPorter> geofmt.ec

lk >udd>Geoindx>PPorter> geofmt

lk >udd>Geoindx>PPorter> geofmt.qedx
lk >udd >Geoindx>PPorter> geofmta.qedx
lk >udd>Geoindx> PPorter> geofmt2.qedx
Ik >udd>Geoindx> PPorter> geofmt3.qedx
lk >udd>Geoindx> PPorter>embed__tabs
lk >udd>Geoindx>PPorter> to-nbiPP

Special instructions:

A. The program, geofmt.ec, can be run on any ter-
minal. The only time that you must be on the NBI
is to run the to-nbiPP program where you must
use the proportional space printer.

B. To get a rough draft, type anything other than nbipp
as the third argument of the exec__com.

Example: ec geofmt 84 10 nbino
Upon termination, type:

dp -dl -nep geofmt.columns
If a file has more than 550 references, do only half
the file, and after you get the dprint, run the pro-
gram again using the last half of the file starting
with a four-column page through the end of the
file.

C. When three columns are desired on the first page
with the map, follow the instructions in paragraph
B with the exception of 8 and 9. For number of
columns, enter 3 and return. In answer to the col-
umn width, enter 48 and return.

D. When using the seven-column option, you can print a
single three-column page giving the reference
numbers for that page, but if more than one page is
to be printed, you must start with a four-column
page.

To run the program:

A. Type: ec geofmt pagelength lines nbipp

Example: ec geofmt 84 10 nbipp
Note: Pagelength specifies the number of lines on
the page. It can be any number, but presently only
84 or 140 are used. Lines is an argument specify-
ing the number of lines that should be available at

GEOINDEX

the bottom of the page in order to print a complete
reference. There must be a third argument. If you
want proportional space printing, type: nbipp.
Otherwise, type some letters or some word for the
third argument.

B. Then you must respond to the following questions or
statements:

1. ENTER FILE NAME: Enter the names
(refNM) and cr (carriage return).

2. TYPE IN STATE NUMBER: Enter 2-digit
FIPS code and cr.

3. WHAT IS YOUR STARTING REFERENCE
NUMBER? (use 3 digits): Enter 3 digits and
cr. Note: We strongly recommend that you
do no more than 550 references at one time.

4. WHAT IS YOUR ENDING REFERENCE
NUMBER? (use 3 digits). Enter 3 digits and
hit cr.

5. fortran_io_: CLOSE FILES? Type yes and

cr.

6. DO YOU NEED TO EDIT? Type yes or type
no, and cr. If you typed no, go to step 7. If
you typed yes, the following will appear on
the screen:

EDIT.
Enter q to exit editor.
You are now in the edit mode. Line length is
set to 80 to make the entire line visible on
the screen. One line of geofmt.data may
print out as three lines on the NBI screen.
Make the necessary changes and be sure to
write the segment before you exit the editor.
Under no circumstances should you break or
interrupt while in gqx. After all changes,
type:

w

q

7. DO YOU WANT 7 COLUMNS? If you want a
combination of 4,3,4,3, and so forth, type:
yes. If you want four columns on every page,
type: no.

8. EMBED_TABS ENTER NUMBER OF COL-
UMNS: Enter 4 and cr.

9. EMBED_TABS ENTER COLUMN WIDTH:
Enter 42 and cr.

10. The ready message will appear on the screen,

and the job is completed.

C. Before recording geofmt.columns on the diskette,
enter gedx and check the beginning of each page
to make sure that a new reference begins in each
column. Also check the last page (not the final
page) to make sure that you specified enough
references to fill the page.

APPENDIX B

If you are using the seven-column option and do-
ing only part of the reference file, you should end
with a three-column page (unless you are doing a
single page). Delete the lines of the four-column
page, write geofmt.columns and quit the editor.
D. The file, geofmt.columns, is now ready to be
recorded on the diskette for printing. Before run-

ning to-nbiPP, issue the following commands:

stty -modes Ifecho

Type ct, and then cr. Four options will appear on

the screen. Type 4, representing computer 4, but .

not cr. Now type:
to-nbiPP cr
1. The following message will appear:

Multics file name to be sent (or q to quit):

Enter geofmt.columns followed by cr.

Multics will respond with ?.

. Hold down SHIFT key and press the XMIT
keys. The NBI now receives the document
line by line. When the last line has been
received, a single Greek character will remain
on the screen.

4. Hit BREAK key. CONVERSATIONAL will

appear on the screen.

5. Type: q cr
Multics will respond with STOP and ready
message.

6. Hit HOME key. READY will appear on the
screen and you are now back in NBI word
processing.

7. Name the document by typing:

co le,1,document name
followed by cr.

8. To print the document, insert and aline
paper and type the following command:

pr li,s:document name

oo po

HOW TO RUN TO-NBID ON MULTICS

Purpose of the program: to-nbiD allows the user to
record segments from Multics on the NBI diskette
(communications disk—four options only) while using
the NBI System II as a terminal.

To run the program:

A. Turn on machine and insert disk. After READY
appears on the screen, type ct and cr. Type 3,
representing computer 3, but not cr. If you ac-
cidently hit cr, COMMAND ERROR will appear on
the screen. If this happens, again type ct, and
when the four options appear on the screen, type:
3.

B. Type cm l,c and cr. Note: The | is an alphabetic
character and not the number one. CONVERSA-

|

Hmo 9

31

TIONAL will appear on the screen. Insert
telephone in modem and dial Multics number.
When carrier light comes on, hit cr. Wait for the
two-line Multics greeting. If you lose the carrier
light or the greeting does not appear, hang up and
redial. You are still in CONVERSATIONAL
mode.
Login to Multics as you usually do. If you cannot
login, hit cr and go back to step B.
You must have the following link in your working
directory:
Ik >udd >Geoindx >PPorter> to-nbiD
Note: To print the greater-than sign, press the
key and CTRL key at the same time.
To execute the program, type: to-nbiD cr
The following message will appear:
Multics file name to be sent (or q to quit):
Type in name of file and then cr.

. Multics will respond with ?.

Hold down SHIFT key and press the XMIT key. The
NBI now receives the document line by line. When
the last line has been received, a single Greek
character will remain on the screen.

Hit BREAK key. CONVERSATIONAL will appear
on the screen.

. Type: q cr

Multics will respond: STOP

fortran_io_: CLOSE FILES?

Type: yes

Multics will then respond with a ready message.

You may now logout of Multics as you usually do, or
you may wish to edit the document to insure that it
was received correctly. You are still in CONVER-
SATIONAL mode.

. Hit HOME key. READY will appear on the screen

and you are now back in NBI word processing.

N. Name the document by typing:

co le,1,document name cr
Note: This command expanded means copy letter,
drive 1, and name you wish to call document.

To print the document, insert and aline paper and

type the following print lines command:

pr li,s:document name cr
NBI will buzz, giving you a chance to make sure
that the paper is inserted correctly. Hit cr. Docu-
ment will start printing.

. If you are no longer on Multics, go to step Q. If you

did not logout in step L, you will now have to get
back in CONVERSATIONAL mode. Type:

cm l,c (as in step B)
CONVERSATIONAL will appear on the screen.
Logout the way you usually do. After the logout

32 GEOINDEX

message appears on the screen, press the HOME
key. READY will appear on the screen.
Q. Type: off er
Remove disk during countdown, and then turn off
machine.

HOW TO RUN CONCAT ON MULTICS

Purpose of the program: concat takes a reference file
and builds from it a file suitable for input into
Bowen's (Bowen and Botbol, 1975) program convert.
Be sure refNM is the file you want.

Input files: refNM, matrix
Output file: strgNM

To run the program:
A. Before running concat the first time, you must link
it to your working directory. Type:
lk >udd >Geoindx> HJohnson > concat
B. Type: concat
C. When asked for the State code, type in the FIPS
code for this State.
Example: concat
ENTER THE 2-DIGIT CODE FOR THE
STATE BEING PROCESSED

Type: 15
YOU GOT TO MAIN
YOU WROTE THE 25th VECTOR TO THE
STRG FILE
STOP
FORTRAN IO : CLOSE FILES?
Type: yes
HOW TO RUN LIST_TAPE_CONTENTS

ON MULTICS

Purpose of the program: list__tape_contents abstracts
files from outside tapes containing digital map data
in ASCII code.

To run the program: After the normal procedure of tak-
ing the tape to production control, sending a
message to the operator asking her to locate the
tape, and being informed that tape is there, you then
list the contents of the tape. This can be done by
list_tape_contents, which prints information
about files recorded on 9-track magnetic tape. This
command will list only ANSI (American National
Standards Institute) standard labeled and IBM
08S/870 standard labeled tapes.

Example: list_tape_contents nnnnnn -long -iom
tape_ibm__ where nnnnnn is the volume number,
-long is an argument that will cause an extensive
amount of information to be printed about the files,
and -iom tape_ibm__ invokes the I/O module to at-
tach and read the specified tape volume. The

tape_ibm__ subroutine is specified in order to list
OS standard labeled tapes. See listing 1.

Now that you have a list of the tape contents,
determine which files you want to transfer to the
disk. Transfer can be accomplished by the tape_in
command, which uses a control file written by the
user in the tape control language. See listing 2 for an
example. The volume statement is the volume
number of the tape. For most outside tapes, Tape,
Storage, Density, Format, Record, and Block will be
the same as those shown in listing 2. There will be a
file number and path statement for each file to be
transferred. The argument of the file statement will
be an asterisk. The number statement will specify
which file number it is on the tape. The argument for
the path statement will be the name that you wish
the file to be called after it has been transferred to
disk.

The control file must have a suffix of .tcl. After you
have created the control segment with a text editor,
you can accomplish semantic checking with the
following command:

tape_in rdtape.tel -ck

The -ck argument does not cause a tape to be
mounted. If any errors occur, check the tape_in
command in the Honeywell Information Systems’
“MPM Peripheral Input/Output Manual.” After
making corrections, type:

tape_in rdtape.tel
To simplify the process, procedures are listed
below in steps:

1. sm sys op Please locate tape nnnnnn.

2. list_tape_contents mnnnnn -long -iom
tape_ibm__

3. Create the .tcl segment. Use uppercase and
lowercase as shown in listing 2.

4. tape_in rdtape.tcl -ck

5. new__proc

6. tape_in rdtape.tcl

HOW TO RUN TAPEDWG ON DATA GENERAL

Purpose of the program: tapedwg reads a hexadecimal
ASCII (American Standard Code for Information In-
terchange) tape written by a 32 bit/word computer
and places it in the format of a System 101 drawing
file. The data consists of z, ¥ coordinates in the format
already specified for map data.

To run the program:

A. Bring the empty drawing file onto the table. Be sure
to display it as a check that it is empty.

B. Run the overlay program tapedwg.

APPENDIX B

. The program will print:
PAUSE MOUNT TAPE ON UNIT 0
and will pause until you enter cr. After the tape is
mounted, enter cr.
The program will print:
UNIT 1 OR 07?
and will wait until you enter 1 or 0 followed by cr.
The program will print:
CHARACTER HEIGHT =
and wait. The usual response is 0.14 and cr.
The program will print:
SYMBOL # =
and wait. The usual response is 1 and cr.
The program will print:
OF PENS = 1,2, OR 3
and wait. The usual response is 3 and cr.
. The program will print:
TEXT WANTED?? 1=YES, 0=NO.
and wait. The usual response is 1 and cr.
The program will print:
SKIP FILES??
and wait. The usual response is no and cr.

¥
i

33

J. If the drawing file is filled, the program will print:
DRAWING FILE FULL!
DO NOT REWIND TAPE!
DO NOT REWIND TAPE!
SAVE DRAWING FILE, GET NEW DRAW-
ING FILE AND RECALL TAPEDWG
OVERLAY
The program will then wait. Do exactly as the
program instructs.
K. If the drawing file is not full, but an EOF is en-
countered, the program will print:
END OF FILE REACHED?
REWIND TAPE?
and wait. The response is y for yes, and cr if there
are no more files to be read. The response is n for
no if there are more files to be read.
L. The program will print:
PROGRAM FINISHED
This means a successful completion of the pro-

gram.

LISTING 1. - Example of list_tape_contents

Mounting volume AAR793 with no write ring.
AART93 mounted on tape_01.

File listing of OS Labeled Volume AAR793 Recorded at 1600 bpi.

ID: BID.DAW.OHIOBOR Format: FB
Number: 1 Mode: EEA
Section: 1

ID: BID.DAW.OHIOLL
Number: 2

ID: BID.DAW.OHIOSB
Number: 3

ID: BID.DAW.OHIOCB
Number: 4

ID: BID.DAW.OHIO
Number: 5

ID: BID.DAW.OHIOPARM
Number: 6

ID: BID.DAW.OHIOSBRD
Number: 7

ID: BID.DAW.OHIOCBRD
Number: 8

ID: BID.DAW.OHIORAD
Number: 9

Displayed characteristics for the last 9 files are identical.
Finished listing volume AAR793 as specified.
r 1256 2.427 52.966 633

Blksize: 6400 Lrecl: 80
Created: 10/27/78 Expires: unknown
Version: 0 Generation: 0

34 GEOINDEX

M. System error messages are printed whenever a prob-
lem occurs. Consult the manuals and take appro-
priate measures.

HOW TO RUN DWGDISK ON DATA GENERAL

Purpose of the program: dwgdisk reads System 101
drawing files and creates an ASCII disk file contain-
ing the coordinate outline data in Geoindex standard
format. The sequence is eight integer values com-
prising the header card information, followed by
isfno (number of coordinate pairs) pairs of real
numbers. The second outline immediately follows
the first and so on.

To run the program:

A. Bring desired drawing file onto table. Make sure
that the drawing file does not contain extraneous
information or the program will not execute cor-

rectly. For example, if you have deleted something
from a drawing file, the deletion will change only
certain parts of that particular record to a zero.
The record still exists and will cause problems in
the program. To delete an unwanted record, save
the file and then bring it back.
B. Run the overlay program dwgdisk.
C. The program will print:
PAUSE FOR OPERATORS
and the program will wait for you to enter cr.
D. The program will print:
NAME OF DISK OUTPUT FILE = 7?
and will wait until you type a name in, followed by
cr. Depending upon your answer, the program will
type:
OLD-FILE OK??
NEW-FILE OK??
or print an error message, or end the program (if

LisTiNG 2.—Ezample of a tel

rdtape.tel

Volume: AAR793
Tape: ibmsl;
Storage: unstructured;
Density: 1600;
Format: fb;
Record: 80;
Block: 6400;
File: *;

path: ohiobor;
number: 1;
File: *;

path: ohioll;
number: 2;
File: *;

path: ohiosb;
number: 3;
File: *;

path: ohiocb;
number: 4;
File: *;

path: ohio;
number: 5;
File: *;

path: ohioparm;
number: 6;
File: *;

path: ohiosbrd;
number: 7;
File: *;

path: ohiocbrd;
number: 8;
File: *;

path: ohiorad;
number: 9;
End;

r 1455 0.077 0.828 27

11/21/78 1455.7 est Tue

APPENDIX B

cr is the first character or the escape sequence,

control d, is entered). A negative answer to the

first two will cause it to ask the question again.

After printing the error message, it will ask the

question again.

. The program will print:

DO YOU WISH TO WRITE AN EOF FLAG ON
THIS FILE??

and wait for a y (yes) or n (no). The last part of the

outline file must have an EOF flag.

. The program will print:

TYPE IN 2 DIGIT STATE NUMBER

Use the FIPS code for this State. This information

goes on the header card.

. The program will then ask:

IS THIS THE GRID BEING PUNCHED
Answer y (yes) or n (no). No other answer will be
accepted. This is needed to fill in the header card.
If the answer is yes, the next question will be skip-
ped.

The program will ask:

IS THIS THE COUNTIES BEING PUNCHED
Answer y(yes) or n(no).)

The program will start to process the data. It
assumes that there is text in the drawing file. If
not, it will print the message:

NO TEXT IN FILE!
and exit from the program.

. When execution is complete, the program prints the

message:

DONE
rings a bell, and returns control to the table.

HOW TO RUN SELDISK ON DATA GENERAL

Purpose of the program: seldisk reads an outline disk
file in Geoindex standard format and creates a System
101 drawing file. The format used is a header card
with (8I5) format followed by the outline with z, y
coordinate pairs in (12F6.3) format on each card. The
drawing file will contain only those outlines identified
by cards that have a feature number and a subfeature

number. Note: The program does not replace the file :
on the table; instead it appends this data at the end of

the existing file.

The ASCII disk file will usually be created by using -

the program dwgdisk.

The drawing file will consist of various outlines all
having the following characteristics: Each outline °

resides in the subfile with a number equal to the
feature number or 1,000 less than the feature number.
There are from one to four lines of text, followed by
one pen up and then a series of pen downs. The text
consists of the feature number, the subfeature number

35

(if ifno greater than 1), the span (if different from 0)
and the second subfeature number (if different from
0).

The outlines will alternate through the three pens so
that the colors will change for better visibility.

To run the program:

A

=

L

. Perform the steps necessary to make files available

from the digitizing table. If you wish to place the
incoming data in a drawing file by itself, CLEAR
the drawing file.

. ACTIVATE AND DISPLAY the drawing file. This

tells the program where to write the information.
Load the cards in the hopper. First will come the
T-file. This consists of cards with the feature number
and subfeature number of those outlines wanted in
the drawing file. These are in (I8,12) format. Follow
these cards with a card that has a -1 as a feature
number (columns 7 and 8). This will be used as a flag
for the end of the T-file.

Run the overlay program seldisk.
The program will print:
ISELDISK OVERLAY
'PAUSE TURN ON CARD READER
and wait for you to enter cr. This is a reminder to
make sure it is turned on. If it is not correctly turn-
ed on, the program will print:
'FOPFL ERROR!
and exit.
The program will print:
ICHARACTER HEIGHT =
and wait for you to type an answer. This will be the
height in inches of all text read in (usually 0.14).
The program will print:
ISYMBOL # =
and wait for you to type an answer. The answer is
the number of the symbol that is drawn wherever
there is a single point for an outline.
The program will print:
NAME OF COORDINATE OUTLINE FILE =
27
and wait for you to type in the name of a disk file.
If this is a file that does not exist, the program will
print:
NEW FILE TRY AGAIN!
and return to ask the question again. Any other er-
ror will cause an error message to be printed, and
then the question will be asked again. A control d
or a cr on the first character will cause the pro-
gram to terminate.
The program will execute and when finished it

returns control to the table with the new drawing
file. Any error in execution will automatically put
you into the command mode. Some kind of error

36

message will be given, and the error should be cor-
rected; then the whole procedure must be started
again. As the program executes, it will print the
feature number of all outlines selected for the draw-
ing file.

HOW TO RUN DWGTAPE ON DATA GENERAL

Purpose of the program: dwgtape reads a System 101
drawing file and writes to tape the header card and
data cards for all outlines. Each separate outline has a
header card with (815) format followed by data cards
in (12F6.3) format. The text position is in the first
position on the first data card. The program makes no
attempt to sort the outlines; it just starts at the begin-
ning of the drawing file and processes the file in se-
quential order.

Several options are available. You can punch cards
for the whole file or you can pick one subfile number
(feature number). It will process all outlines that have
the subfile number you have chosen. The second op-
tion gives you the choice of punching all the data cards
of each outline or of punching only the header card
and first data card for each outline. This is useful
when many text position changes have been made that
would affect only the first data card. The third option
lets you skip files on the tape so that your file can be
placed on a tape with other files.

To run the program:

A. Bring desired drawing file onto table. Make sure
that the drawing file does not contain extraneous
information or the program will not execute cor-
rectly. For example, if you have deleted something
from a drawing file, the deletion will change only
certain parts of that particular record to a zero.
The record still exists and will cause problems in
the program. To delete an unwanted record, save
the file and then bring it back.

B. Run the overlay program dwgtape.

C. The program will print:

PAUSE MOUNT TAPE ON UNIT 0
and will wait for you to enter cr. This gives you a
chance to mount the tape if you have not already
done so. The tape must have a write ring.

D. The program will print:

ISUBFILE# = , TYPE 9999 FOR ALL!
This gives you the option of punching only one
feature number (subfile) or everything in the file.

E. The program will print:

!DO YOU WISH THE FIRST DATA CARD
ONLY???
Answer y (yes) or answer n (no). No other answer
will be accepted.

GEOINDEX

F. The program will print:

TYPE IN 2 DIGIT STATE NUMBER.

Use the FIPS code for this State. This information
goes on the header card.
The program will then ask:

IS THIS THE GRID BEING PUNCHED??
Answer y (yes) or answer n (no). No other answer
will be accepted. This is needed to fill in the header
card. If the answer is yes, the next question will be
skipped.

. The program will ask:
IS THIS THE COUNTIES BEING
PUNCHED??
Answer y or answer n.
I. The program will ask:
SKIP FILES??
Answer y or answer n.
J. The program will ask:
HOW MANY FILES??
Type in the number of files you wish to be skipped.
. The program will start to process the data. It
assumes that there is text in the drawing file. If
not, it will print the message:

INO TEXT IN FILE!
and exit.

When execution is complete, the program prints the
message:

'DONE!
and returns control to the table.

HOW TO RUN VERSATEC.EC ON MULTICS

Purpose of the program: versatec.ec creates the files
that are to be used for input to the Multics Versatec
programs. The input files are those files that were
created on the Data General minicomputer by the pro-
gram dwgtape.

To run the program:

A. Before you run this program for the first time, the
program must be linked. This is done by typing:
lk >udd >Geoindx >PPorter >versatec.ec
' B. After this is done, the next step is to send the
systems operator a message to locate the tape:
sm sys op Please locate tape tape number
After the operator has located the tape, then type
in:
ec versatec tape number numbers of files filel
file2 . . . filen. filel, file2 . .. filen must not con-
tain more than 32 characters including blanks.
C. If there is more than one coordinate file, then these
coordinate files must be merged into one large co-
ordinate file. This can be done in the editor gedx.

APPENDIX B 37

D. The output file of the merge must be of the form:
coorNM.unsort, where NM is the State code.

HOW TO RUN INDEX__VERSATEC ON MULTICS

Purpose of the program: index_versatec plots the
various «, y data files that constitute an index map us-
ing the 18-in. Versatec plotter.

To run the program:

A. First link to the following:
Ik >udd >Geoindx>PPorter>index__versatec
1k >udd >Geoindx>PPorter>init_vals
B. For each State NM you wish to plot, place the follow-
ing files in your working directory (or link). The
program will access the data via these file
numbers:
bordNM 10
gridNM 11
statNM 12
counNM 13
coorNM 14
pverNM 15
The format of pverNM is explained in listing 3.
Note: Before executing any program on Multics,
you should do a new__proc.
C. Execute the plot program by typing: index_ver-
satec

The program will respond:

TYPE IN TWO DIGIT STATE NUMBER
Type in the State number. The program will ex-
ecute and will periodically print out information.

D. The versaplot software will do as many as 100 dif-
ferent plots and automatically store the output in
segments named vp/t00, vplt01, vplto2,.. .,
vplt98, vplt99. These will write over any existing
segments with that name. Therefore, the first
thing you should do after completing the program
is to rename these segments.

E. To execute for another State:

1. Make sure you have renamed the vp/tNM
segments.

2. Do a new__proc.

3. Go to step B.

F. To put plot segments onto tape: There is an ex-
ec_com that will place as many segments as you
wish onto a tape. The best way to do this is to copy
the exec__com into your segments along with all its
six names. Type:

copy >udd >Geoindx >PPorter >gpt.ec- all
G. To use:
1. Take a tape to production control. A label
“For Multics Use” should be on the tape.
2. Send a message to system operator to get the
tape:
sm sys op Please locate tape nnnnnn

LISTING 3.--Parameter cards for a Versatec plot

I. Read input parameter from cards for each data file.

Files Columns
A. Neat line 1-22 card 1
B. Grid 23-44 card 1
C. State 45-66 card 1
D. Counties 1-22 card 2
E. File of selected outlines 23-44 card 2
F. Outline coordinate 45-66 card 2
G. 0 = end of all plotting 67 card 1

1 = more cards follow describing another plot
II. Procedure: plot each of the first four files.

ITI. Sort the file of selected outlines into ascending order (eliminate duplicates).
Plot these selected outlines from the master file, or plot all of the master file.

Each 22-column section contains the following information:

Column 1 0 = no plot
1= plOt

Column 2 0 = plot character and lines
]_ =

plot lines (points) only
2 = plot characters only

There will be a separate subroutine for each of the column 2 choices.

Column 3

Number of different line

widths to be used in
plotting this file.

If there are more than one, the program will rotate through those specified, one for each outline.
Columns 4 through 12 provide values for each line width. Start at left. Lines widths are 1 through 5, which yield lines from 1 to 5 dots

wide.

Columns 13 through 22 are not used for versatec plotting on Multics.

38 GEOINDEX

Example: sm sys op Please locate tape
aar711.
3. Wait for message from operator saying that
she has the tape(s).
4 . Execute the exec_com. Usage is:
ec gpt &1 &2 &3 ... &n
where &1 is the tape number, and &2 to &n
are segments to be put on this tape. Example:
ec gpt aar711 plotl plot2 plot3
which places three plots on the tape. Note:
You can put approximately 1,100 pages of
segments on a 1,000-inch tape and about
2,200 pages onto a 2,000-inch tape. The
exec_com will split a segment between two
tapes, but you do not want to do this. The
plotter cannot handle a multiple-tape file pro-
duced in this fashion.

HOW TO RUN SORT.VERS.COOR.EC ON
MULTICS

Purpose of the program: sort.vers.coor.ec creates the
files that are to be used for input to the Multics Ver-
satec programs. The input files are those files on the
tape that was created on the digitizer by program
dwgtape.

To run the program:

A. Before you run these programs for the first time, the

programs must be linked. This is done by typing:
lk > udd> Geoindx> PPorter> pgm1.vers.exthdr
lk >udd >Geoindx >PPorter >pgm2.vers.sequent
lk >udd>Geoindx>PPorter> pgm3.vers.merge
lk >udd>Geoindx>PPorter> sort.vers.coor.ec

B. If there is more than one coordinate file, then these
coordinate files must be merged into one large
coordinate file. This can be done in the editor
qedx.

C. The output file of the merge must be of the form:

coorNM.unsort
where NM is the State code.

D. You must have coorNM.unsort in your directory or
be linked to it. To run, type:

ec sort.vers.coorNM
where NM is the State code.

E. This exec com is made up of three programs and one
sort. pgmi.vers.exthdr creates an unsorted
header record file from the unsorted coordinate
file that was created in the qedx editor. This un-
sorted header record file is input to the system sort
where a sorted header record file is created.

F. pgm2.vers.sequent converts the unsorted coor-
dinate file from a stream to a sequential file.

G. pgma3.vers.merge merges the sorted header file and

the sequential coordinate file into the sorted coor-
dinate file.

H. As sort.vers.coor.ec is executing, messages are
displayed on the terminal indicating the progress
of the job.

I. The files created by versatec.ec and sort.vers.-
coor.ec can be input to the index_versatec pro-
grams.

HOW TO RUN MASTER ON MULTICS

Purpose of the program: master reads coordinate files
for map outlines and calculates areas for each outline.
It begins with the area for the entire State. After com-
puting this area, the program compares the area with
the true area from a file named areano. The true area
divided by the computed area gives a factor that is
used to adjust each area computed for each outline.

At the same time, a center point is computed for
each area. Then these centers are tested to make sure
that they lie inside each outline and that they are not
too close to the boundary. If they pass the test, they
are written to a file cntrNM. Otherwise, they are put
in a file named doubt. This must be checked by hand
and, if necessary, adjusted by hand:

Input files: areano, statNM, coorNM.

Output files: areaNM, cntrNM, measNM, doubt

To run the program:

A. Before running master for the first time, you must
link it to your directory by typing:

Ik >udd >Geoindx> HJohnson > master
Ik >udd >Geoindx>HJohnson > areano

B. To run, type: master

C. When asked for it, type the FIPS code for the State.

D. When asked for it, type the denominator of the map
scale for the map used for this State, format,
(F8.0). For example, where the scale is given as
1/1,000,000, type 1000000.. Where the scale is
1/750,000, type 750000.. Be sure to include the
decimal point. ,

E. After the State outline is used to compute State
area, the machine will tell you the factor. This
should be close to 1.0. If it is very different from
1.0, you may have the scale wrong or something
may be wrong with the State file.

F. After the run is complete, list doubt and make cor-
rections.

HOW TO RUN STATE_OPTIMA ON MULTICS

Purpose of the program: state_optima prints the max-
imum latitudes and longitudes that border a State
outline.

APPENDIX B

To run the program: |
A. You must have the following links:
1k >udd >Geoindx> HJohnson > state_ optima
You must also be linked to the State radian file
strdNM. .
B. Type: state_optima i
and follow directions. You will be asked for FIPS
code for the State. 1

HOW TO RUN ADDRAD ON MULTICS

Purpose of the program: addrad inserts correct areas,
latitudes, longitudes, centers, and other data into the
strgNM files for final input to the GRASP convert
program.

Input files: strgNM, measNM, conxNM, ctrdNM
Output file: redyNM

To run the program:

A. Before running addrad for the first time, you must
link it to your directory by typing:
lk >udd >Geoindx > HJohnson > addrad
B. To run, type: addrad
C. When asked, type the FIPS code for the State.

To check out error messages in addrad:
A. While running addrad, the program may write error
messages in the form:
THERE IS NO AREA WITH IF = 28 AND ISF
=1
B. These messages must all be checked out.
C. The messages are caused by two conditions:
1. The outline for this /F and ISF is a single
point. This condition is evident from an in-

39

To run the program:
A. Before running covert.ec for the first time, you
must create the following links:
Ik >udd >Geoindx >PFulton> covert.ec
1k >udd>Geoindx >PFulton>index0
1k >udd >Geoindx>PFulton>dicn
Ik >udd >Geoindx >PFulton>defn
Ik >udd >Geoindx>PFulton>mask
1k >udd >Geoindx>PFulton>setmas
1k >udd >Geoindx>PFulton>grasp
1k >udd>Grasp>grasp
1k >udd >Grasp>convert
B. Before running, print the index0, dicn, and mask
file.
C. Type:
ec covert NM state
where NM is the FIPS code number for the State
and state is the State name. Example:
ec covert 45 SouthCarolina
D. After running covert.ec, print index0 again to be
sure it has been updated properly. Also compare
the run printout with the sample to be sure it was
successfully completed.
E. After running, be sure you give access on the new
indxNM file to *.Gmap-Indx.*
F. If the State has to be run through covert.ec again,
be sure to delete the indxNM file before running
covert.ec, and delete the State line from index0.

HOW TO RUN GR.EC ON MULTICS

Purpose of the program: gr.ec sorts the State index file
by scale and creates three files:
t1p for scales less than or equal to 1:24000

spection of coorNM file, where the ISFNO
number in the header card is 2. When this
condition occurs, no record appears in
measNM.

2. An error has occurred. When there is no outline
for this /F and ISF, then IBOUND and ISPAN
should not be present, or a record should be
found in measNM.

Inspect the reference file to see whether an
outline is present, which is indicated by values
in items 50-59, 76-85 (IBOUND and ISPAN).
No record occurs in measNM for this /F and
ISF.
D. Try running master again to see if the record in
measNM was somehow dropped.

HOW TO RUN COVERT.EC ON MULTICS

Purpose of the program: covert.ec reads the redyNM
file and creates a GRASP file for the State.

t2p for scales greater than 1:63360 and
t3p for scales between 1:24001 and 1:63360

{ To run the program:

" A. Before running gr.ec for the first time, create the
following link:

Ik >udd >Geoindx>PFulton>gr.ec

B. Before running gr.ec, you must first have run
covert.ec for the selected State.

C. Type: ec gr NM
where NM is the FIPS code for the selected State.
Example for Illinois: ec gr 17

D. The program will print the files t7p, t2p, and t3p.
These files should be inspected for accuracy. If any
discrepancy is found, the redyNM file must be cor-
rected and covert.ec rerun for the selected State.
Then gr.ec must be rerun to insure that the correc-
tions were entered properly.

E. The three files t7p, t2p, and t3p must be kept and
used in two succeeding programs:

40

1. They must be used in inplot.ec.

2. They must be used in index__versatec. After
the final Versatec plots have been sent out for
reproduction, the files should be deleted. If
several States are processed through these
programs at the same time, then the files
should be renamed t1pNM, where NM is the
FIPS code for the selected State. In this way,
the data can be stored safely until the pro-
grams are actually executed, at which time
the files must resume their original names.

F. Caution: If the execution fails, be sure to delete the
files that may have been created: t1, 12, t3, t1p,
t2p, t3p, and output_file. If not, the files will
cause other retrievals to fail.

HOW TO RUN INPLOT.EC ON MULTICS

Purpose of the program: inplot.ec plots the three files
created by gr.ec, which are t1p, t2p, and t3p. It pro-
vides a visual check of the integrity of the plot files.

To run the program.

A. Before running for the first time, you must establish

the links:

lk >udd>Grasp>assoc

Ik >udd >Grasp> closer

Ik >udd >Geoindx >PFulton> inplot.ec

Ik >udd >Geoindx >PFulton>pn16

Ik >udd >Geoindx>PFulton> pos

Ik >udd >Geoindx >PFulton> plo

Ik >udd>Geoindx> PFulton> plod

Ik >udd >Geoindx>PFulton> ploc6
This program is run soon after gr.ec for the
selected State and to access Tektronix routines
type:

setup__tektronix_ tes.

B. Before any execution of the program, you must also
have all the #, y coordinate files available, such as
bordNM, coorNM, statNM, and counNM. This
program must be run on a Tektronix terminal
because it plots directly on the screen.

C. To run the program, type: ec inplot NM state
where NM is the FIPS code for the State, and state
is the name of the selected State. Example, for II-
linois: ec inplot 17 Illinois

HOW TO RUN PN16 ON MULTICS

Purpose of the program: pn16 plots a State index map
interactively on a Tektronix CRT screen. This is a
two-step process. First, a GRASP retrieval is ex-
ecuted wherein a disk file is created that contains the
links to the coordinate Geoindex files. This GRASP

GEOINDEX

file is identified as unit 13 and is described below.
However, the program is also constructed so that the
user has the option of plotting any combination of the
input files.

| To run the program:

A. Before running pn16 you must link to it:
Ik >udd>Geoindx>PFulton> pn16
Ik >udd> Geoindx>PFulton> skod
B. Input: You must also have the State base-sheet files
or link to them.
These files are:
coorNM, bordNM, statNM, counNM, and
gridNM
Optionally, you need files created by a GRASP
retrieval or a file in the same format as the
coorNM file.
C. Type: pnl6
D. The program will supply the following prompts. The
user will supply the replies:
Prompt 1: NEED STATE CODES (Enter y
for yes.)

Reply: y (The skod file is then printed; n or
cr presents prompt 3.)
: Prompt 2: TYPE 1 AND HIT RETURN KEY
! WHEN READY.
i Reply: 1 (MANDATORY REPLY)
Prompt 3: ENTER STATE ID NUMBER.
Reply: 18 (example showing FIPS code for
Indiana)
Prompt 4: IF A COORDINATE FILE IS TO
BE PLOTTED, ENTER Y.
Reply: y (presents prompt 5)
n or cr (presents prompt 7)
Prompt 5: ENTER NAME OF FILE TO BE
PLOTTED.
Reply: t1p (example showing name of a file
created by GRASP)
Prompt 6: IF INPUT SHOULD BE SORTED,
REPLY WITH A Y FOR YES.
(This file should be sorted the first
time it is used because the pro-
gram expects the numeric iden-
tifiers in ascending order; n or er
presents prompt 7.)
Reply:
Prompt 7: ENTER TITLE FOR MAP.
Reply: Indiana for years greater than 1970
(example)
Prompt 8: TO PLOT STATE ENTER 1.
Reply: 1 (causes State boundary to be plot-
ted)
0 (No State boundary will be plot-
ted.)

APPENDIX B 41

cr (No State boundary will be plot-
ted.)
Prompt 9: COUNTY PLOT (ENTER 1 FOR
SOLID LINE, 2 FOR DOTTED,
ELSE 0.)
Reply: 1 (County boundaries will be plotted
in solid lines.)
2 (County boundaries will be plotted
in dotted lines.)
0 (No county boundaries will be
plotted—presents next prompt.)
cr (No county boundaries will be
plotted—presents next prompt.)
Prompt 10: TO PLOT GRID ENTER 1.
Reply: 1 (Latitude and longitude will be
plotted.)
0 (No latitude and longitude will be
plotted—presents next prompt.)
cr (No latitude and longitude will be

plotted—presents next prompt.)
Prompt 11: TO SUPERIMPOSE ANOTHER

FILE, ENTER 0 FOR NO, 1 FOR
LINES ONLY, 2 FOR LINES
AND CHARACTERS. (This
prompt causes another plot file to
be superimposed on the map. The
file must have the same format as
the coordinate files—for example,
the locations of silver deposits
could be plotted on the base or in-
dex map of Nevada.)

Reply: 1 (plots outlines and (or) points only;
presents prompt 12)

2 (plots outlines and (or) points with
an identifying number; presents
prompt 12)

0 or cr (No superimposed file will be
plotted; next erases screen and
starts plotting.)

Prompt 12: ENTER FILE NAME. (This ques-
tion is asked only if 1 or 2 were
the replies to prompt 9.)
Reply: cu3 (example of the name of a plot
file).
The screen is then erased, and the files are plotted.
A bell rings when the plots are completed. For one
hard copy, type the ¢ and cr keys. For multiple
hard copies, use the copy switch. When finished,
cr.
Prompt 13: FOR AN ENLARGEMENT OF A
PART OF THIS PLOT, TYPE Y.
~ Reply: n or cr (No enlargement will be
made—presents prompt 16.)
¥ (An enlargement will be made ac-

cording to the replies from
prompts 14 and 15.)

Prompt 14: POSITION CURSOR AT LOWER
LEFT OF DESIRED AREA;
TYPE C.

Reply: Physically move the crosshair cur-
sor to the required position and
type ¢ and cr.

Prompt 15: POSITION CURSOR AT UPPER
RIGHT OF DESIRED AREA;
TYPE C.

Reply: Physically move the crosshair cur-
sor to the required position and
type ¢ and cr. (For best results,
the window defined by the cross-
hair cursor should approximate
the shape of the original plot;
otherwise, geometric distortions
will be introduced into the plot.)

The program from prompt 7 through 13 is then

repeated.
Prompt 16: TO PLOT ANOTHER FILE
ENTER Y FOR YES.
Reply: y (causes a return to prompt 4)

n or cr (ends the program and
causes the message “good” to be
printed to show a successful ex-
ecution)

The system prints STOP fortran__io: Close files?
Reply: yes

HOW TO RUN BIGSTA ON MULTICS

Purpose of the program: bigsta compiles statistics on
most of the files that we use in processing one State. It
counts cards, computes lengths, and so forth,
whenever appropriate.

Input files: coorNM, comxNM, statNM,

strdNM, cordNM, counNM, curdNM, cntrNM,

ctrdNM, gridNM, areaNM, redyNM, measNM,

bordNM, and any others you wish to count
Output files: None

To run the program:

A. Before running bigsta for the first time, you must
link it to your directory by typing:

Ik >udd >Geoindx> HJohnson > bigsta

Ik >udd >Geoindx >HJohnson >bigcal__bigsta
Ik >udd >Geoindx > HJohnson >out2__bigsta

Ik >udd >Geoindx > HJohnson >prim__bigsta

1k >udd >Geoindx > HJohnson >rads__bigsta

lk >udd >Geoindx > HJohnson > cards__bigsta

42

Ik >udd >Geoindx >HdJohnson >outl_bigsta
Ik >udd >Geoindx >HJohnson >ftnumber

B. Type: bigsta

C. When asked, enter the two-digit FIPS State code.

D. After running through the standard files, the pro-

gram asks for any other files you wish processed.
You may wish to type the following: paraNM

E. After the run is complete, the total number of cards
is also given. The printout of the total should be
filed.

HOW TO RUN USMERG.EC ON MULTICS

Purpose of the program: usmerg.ec takes as input a
newly created indxNM file and appends it to the ex-
isting indxus. indxus is the GRASP file that con-
tains all the States. The output file is named usall.
At the end of the run, it is dprinted for checking.

To run the program:

A. Before running usmerg.ec for the first time, you

must establish the following links:

Ik >udd>Geoindx >PFulton> usmerg.ec

Ik >udd>Geoindx>PFulton> indxus
After establishing the link to indxus, copy it into
your directory.

B. To run, type: ec usmerg NM
where NM is the FIPS code for the State that is to
be added to the indxus file. Example: ec usmerg
17 will take indx17 for the State of Illinois and ap-
pend it to indxus.

C. Study the program run listing for any errors. usall
will be dprinted. Study the listing of usall for any
errors.

D. If there are no errors, save the existing indxus by
copying into a file called sindxus. Then delete
indxus, and rename usall, indxus.

E. Run GRASP and check new indxus.

F. If there is an error:

1. Delete usall and indxus.
2. Copy sindxus to indxus.
3. Rerun, starting at C.

HOW TO RUN STATE_TO_TAPE ON MULTICS

Purpose of the program: state_to_tape must be run
on a console that gives a printout.

To run the program:

A. Be sure you have created the following links to the
program:
lk >udd >Geoindx >HJohnson >state__to_ tape
Ik >udd >Geoindx >HJohnson>
heading__state__to__tape
Ik >udd >Geoindx >HJohnson > sts_ begin

GEOINDEX

Ik >udd >Geoindx >HJohnson>
list__state__tape.ec

Ik >udd >Geoindx >HJohnson>
disk__to__tape_fb_retain.cc

lk >udd >Geoindx > HJohnson>
disk__to__tape_vbs_ retain.ec

Be sure you have the following files in your directory
or that you are linked to an actual segment con-
taining them:

coorNM, cordNM, statNM, strdNM, counNM,
curdNM, cntrNM, gridNM, bordNM, redyNM,
paraNM

Look up the number of this tape.

Look up the last file number that was written to this
tape. If you have never run this program on this
tape, then the last file number is 1 (the file that in-
itialized the tape).

. Type:

sm sys op Please find tape number
(Tape number being your tape number)

. Wait until the operator sends a message to your con-
sole that he has found the tape.

Type: state__to__tape
(The program will prompt you for the information
it needs.)

. As directed by the machine, make two copies of the
printout. Store these printouts for future
reference. Then put the original printout in your
log for this tape. You will need to refer to it
whenever you add more records to the tape or
whenever you want to print a listing of these files.

I. Remember to use a second backup tape with these

files.

J. To drop these files from your directory, link to:

Ik >udd >Geoindx > HJohnson >drop.ec
and type: ec drop NM
where NM is the State number.

HOW TO RUN PULL_OFF ON MULTICS

Purpose of the program: pull_off enables the user to
select files from the Geoindex files and to write the
selected files to disk.

To run the program:

A. Make the following links:

lk >udd >Geoindx >HJohnson >pull__off

Ik >udd >Geoindx >HJohnson >

separate_pull__off

>udd >Geoindx >HJohnson >state__pull_off
>udd >Geoindx >HJohnson >up__file_ number
>udd >Geoindx >HJohnson >
tape_to_disk_vbs_ retain.ec

1k
1k
1k

APPENDIX B 43

lk >udd >Geoindx>HJohnson>
tape__to_disk_fb_ retain.ec
Ik >udd >Geoindx>HJohnson>
list_state__tape.ec
. You need to know the tape number.

C. You need to decide whether to take off certain
separate files, or to use all the files for one State.

D. To take off separate files, you must know their exact
names, and their file numbers (positions) on the
tape. This information can be obtained from a tape
map or by using list__state__tape.ec.

[oe]

E. Send a message to the operator to get your tape:
sm sys op Please find tape nnnnnn

F. Type: pull_off
Follow directions.

G. This program prints out a tape map at the end. If you
do not want that, just hit break key after it starts
printing.

H. Remember that many of the tape files of paraNM,
cntrNM, and redyNM have an extra record that
does not end in a newline character. You may have
to edit these files before using them.

HOW TO RUN BACKUP ON MULTICS (COMPLETE
DUMP)

Purpose of the program: backup enables you to dump
one or more segments to your tape. You can even
dump whole directories. The program creates a file
named control.dump.You must type in all the absolute
path names of the segments or directories you want to
dump to tape. Note: These must be entered in
alphabetical order.

How to run the program.:

A. First you must make the followings links:
Ik >udd >Geoindx > HJohnson >backup
Ik >udd >Geoindx >HJohnson > backup.ec
Ik >udd >Geoindx > HJohnson >backup1
Ik >udd >Geoindx > HJohnson >backup2
lk >udd >Geoindx > HJohnson >dump.ec

B. You must know the absolute path name of the
segments you want to dump for backup. Example:
>udd >Geoindx > HJohnsor > indxus
>udd >Gmap__lndx >H Inhnson
This would dump the one segment indxus and the
whole directory >udd > Gmay__Indx >HJohnson

C. You must know your tape number.

D. You must send a message to the operator to find
your tape:
sm sys op Please find tape nnnnnn
E. From operator: Go Ahead

F. Type: backup
Computer will respond: backupl

G. Prompt: DID YOU SEND A MESSAGE TO THE
OPERATOR TO FIND YOUR TAPE? IF
YOU DID, TYPE A 1
Response: 1
Computer responds with a prompt. Last part of
prompt is:
NOW TYPE IN THE ABSOLUTE PATH
NAME OF THE NEXT SEGMENT OR DIREC-
TORY YOU WANT TO BACKUP. TYPE ITS
ABSOLUTE PATH NAME
Example: >udd >Geoindx > HJohnson >indxus

H. Prompt: IF YOU WANT TO DUMP MORE
PATHS, TYPE 1; OTHERWISE, 0
Stop
Prompt: FORTRAN IO : CLOSE FILES?
Response: Yes
Message: io close file10
io detach file10
Computer prints: backup2
Prompt: TYPE YOUR TAPE NUMBER, FOR-
MAT A6
Response: nnnnnn (example, 111849)
Computer prints:
Complete__dump__control.dump HHJ -debug
>udd > Geoindx>HJohnson >indxus
Prompt: TYPE PRIMARY_DUMP_TAPE
LABEL
Response: 111849
Computer prints:
TAPE_: MOUNTING TAPE 111849 FOR
WRITING TAPE_: TAPE 111849 MOUNTED
ON DRIVE 1 DUMP FINISHED.

I. The computer prints:
THIS ROUTINE ADDS 1 OR 2 MESSAGE
FILES TO YOUR DIRECTORY WHICH ARE
AUTOMATICALLY DPRINTED. THEY ARE
VERY IMPORTANT AND SHOULD BE
PICKED UP AND SAVED IN A SAFE
PLACE.

THEY ARE THE DUMP.MAP AND POSSI-
BLE ERROR MESSAGE. SAVE THEM IN A
SAFE PLACE. THROW AWAY ANY OLD
DUMP.MAPS FOR THIS TAPE, SINCE THEY
ARE COMPLETELY OBSOLETE.

Type: Rename indxus indxus__true

44 GEOINDEX

HOW TO RUN RESTORE ON MULTICS

Purpose of the program: restore enables you to put a file
from a backup tape, (created by the program backup)
onto the Multics system

How to run the program.:

A. First make the following links:
Ik >udd >Geoindx >HJohnson >restore
lk >udd >Geoindx >HJohnson >retrieve.ec
Decide which segments you want to restore from
your backup tape. Check the dump.map for that
tape to make sure that the segments are present.
You must know their exact pathnames.

B. You must have these segments listed in the same
order that they appear in the dump.map.

C. Be sure to rename your file before bringing it back
from tape, such as change indxus to indxus__true.

Then you can use the command:
compare indxus indxus__true
to see if there are any differences.

D. Type: new_proc
and wait for system to respond; then type: restore

E. Prompt: DID YOU SEND A MESSAGE TO THE
OPERATOR TO FIND YOUR BACKUP
TAPE? IF YOU DID, TYPE: 1

NOW TYPE THE ABSOLUTE PATH
NAME OF THE NEXT SEGMENT OR
DIRECTORY THAT YOU WANT TO
RESTORE; THIS NAME IS ON YOUR
BACKUP TAPE.
Use its absolute path name. Example:

Ik >udd >Geoindx> HJohnson >indxus

G. Prompt: IF YOU WANT TO RESTORE MORE
PATHS, TYPE 1; OTHERWISE, TYPE 0

H. Prompt: TYPE THE NUMBER OF YOUR
BACKUP TAPE, FORMAT (A6). Exam-
ple: 111849
Computer prints:
RETRIEVE CONTROL.RETRIEVE -DEBUG
INPUT TAPE LABEL: 111849
TAPE_: MOUNTING TAPE 111849 FOR
READING
TAPE__: TAPE 111849 MOUNTED ON DRIVE
1
BEGIN AT 01/25/78 2053.3 EST WED.
END OF READABLE DATA.
BK_INPUT: ARE THERE ANY MORE
TAPES TO BE RELOADED?
User responds:
No

F. Prompt:

Computer prints:
NORMAL TERMINATION 01/25/78 2053.4
EST WED.
DPRINT -DL CONTROL.RETRIEVE.
RETRIEVE.MAP
1 REQUEST SIGNALLED, 0 ALREADY IN
PRINTER QUEUE 3
This routine automatically dprints a retrieve map.
Check to make sure that the requested files are in
your directory.
User should then issue list command to find out
whether the file has been restored. Example:
Is indxus
User should then issue compare command to in-
sure the segment restored is the same as the seg-
ment that was written to tape using backup. Ex-
ample: Compare indxus indxus__true
Computer responds:
NO DISCREPANCIES FOUND.

HOW TO RUN VERPLOT ON MULTICS

Purpose of the program: verplot generates the status
map for the Geoindex. This program reads a file of
commands and creates a Versatec plot file using the
instructions from that file.

To run the prograr:

A. Link to the following Multics files:
Ik >udd >Geoindx >PPorter>verplot
Ik >udd >Geoindx >PPorter >init_vals
Copy or link to the following coordinate files:
lk >udd >Geoindx >PPorter >stat90
lk >udd >Geoindx >PPorter >hawaii
lk >udd >Geoindx >PPorter>alaska
Ik >udd >Geoindx >PPorter >puerto_rico

B. Create or link to some command file. See listing 4 for
instructions on the contents of this file. An exam-
ple is shown in listing 5.

C. Run the program on Multics by typing: verplot

D. The program will ask the following question:
WHAT IS THE NAME OF YOUR COMMAND
FILE??

USE NO MORE THAN SIX CHARACTERS!
and will read your answer, then attach and open
this file for reading. A nonexistent file will give an
error message on the terminal.

E. The program reads the data and calls the subroutine
corresponding to that command. Any error in a
command causes this error message to be written
along with the entire data record:

APPENDIX B 45

THIS LINE CANNOT BE IDENTIFIED AS A
COMMAND.
Note: All error messages are written to a file
called temp10, which is created by the program
and at the end of the run dprinted to provide a
hard copy, which is always provided unless the pro-
gram does not run to completion (example: hitting
break key); if it is not dprinted, you have no means
to get the information in temp70. An abnormal
termination leaves temp10 as a zero length file.
F. As each subroutine is called, it will process the infor-
mation given in the command line and write
messages to temp10 for both valid operations and
for errors. We have tried to take into account
every type of possible error for which it gives an
appropriate error message and have the program
continue. This program should give a plot and a
progress and error report to cross-check and to
identify any errors and omissions. Any error for
which a report is not given is not a common typing
or omission error and must be resolved in a dif-
ferent manner.

G. After the program has finished the plots, it prints
this message:
PLOT FINISHED
N VECTORS LOST
N ACTIVE LINES USED
1 request signalled, N already in printer queue 3.
Stop.
H. To put plot segments onto tape: An exec_com will
place as many segments as you wish onto a tape.
The best way to do this is to copy the exec__com in-
to your segments along with all six of its names.
Type: copy ~>udd ~>Geoindex >PPorter >gpt.ec-all
I. To Use: Label a tape “For Multics Use” and take it to
production control. Send message to system
operator:
sm sys op Please locate tape number nnnnnn
Wait for message from operator saying he has the
tape(s). Execute the exec__com. Usage is:
ecgpt &l &2 &3...&n
where &1 is the tape number, and &2 to &n are
segments to be put on this tape. Example: ec gpt
aar730 plotl plot2

LISTING 4.~Formation of the command file for verplot and an example command file

The file is composed of one or more instructions taken from a list of eight commands along with a variety of keywords that give almost limitless
scope in creating a Versatec plot file. Restrictions for a command will be explained in that particular section.
I. All commands consist of records that have a maximum of 80 characters. This record length facilitates the use of cards if wanted.
II. All commands and keywords can be either uppercase or lowercase, but must all be of one type in a particular word. The types can be mixed

within a record.

II1. Each command must start in column 1 (card-image terminology used) and must be immediately followed by a semicolon.
IV. Keywords can be in any order but must be separated by commas. For each command, certain keywords are required and others are op-
tional; default values are present if an optional keyword is missing. Many keywords include some data values.
V. Except for the PLOT command, all commands and keywords must be on the same record.

VI. Blanks are ignored except in the following cases:

=Kel-- IS

asy = 20.
Note: “!” is the symbol used for a blank space.
VIL
VIIL

. All commands and keywords must be in a continuous string.

. Commands must start in column 1 and be immediately followed by a semicolon.

Keywords that require a data value must be immediately followed by the character =.

. When used in a data value as a place holder. Example: x = !!1!!, will be interpreted as z = 100. Example: y =2..!!, will be interpreted

If at any time the same keyword occurs twice in a record, the second occurrence will take precedence. _
In all commands, if an error in the data value for a keyword occurs, that value will be either ignored or set to the default value if one exists.

IX. In all commands, if any required keyword is missing, the command is ignored.

X. All numbers can be in either integer or real number format.
XI. An example of a command file, statpm, follows:

statpm

outline; npoint=5,shade=13

19.4,0.67,19.4,0.92,19.73,0.92,19.73,0.67,19.4,0.67

outline; npoint=5,shade=12

19.4,1.59,19.4,1.84,19.73,1.84,19.73,1.59,19.4,1.59

outline; npoint=5, shade=1

19.4,2.51,19.4,2.76,19.73,2.76,19.73,2.51,19.4,2.51

46 GEOINDEX

LISTING 4.~ Formation of the command file for verplot and an example command file— Continued

outline; npoint=5, shade=4
19.4,3.43,19.4,3.68,19.73,3.68,19.73,3.43,19.4,3.43
legend; x=19.88,y=0.72,height=0.1,nchar=9
PUBLISHED
legend; x=19.88,y=1.64, height=0.1,nchar=8
IN PRESS
legend; x=19.88,y=2.56,height=0.1,nchar=22
IN COMPUTER PROCESSING
legend; x=19.88, y=3.48,height=0.1,nchar=14
IN COMPILATION
reorg; x=1.0, y=1.0
outline; npoint=5
6.0,0.0,0.0,3.2,3.4,3.2,3.4,0.0,0.0,0.0
legend; x=1.35, y=3.3, height=0.1, nchar=6
ALASKA
plot; name=alaska, shadeall, pattern=1,13
end plot;
reorg; x=5.6, y=-0.4
outline; npoint=5
6.0,0.0,0.0,1.3,2.0,1.3,2.0,0.0,0.0,0.0
legend; x=0.68, y=1.42, height=0.1, nchar=6
HAWAII
plot; name=hawaii, shadeall, pattern=1,13
end plot;
reorg; x=8.0, y=0.7
outline; npoint=5
6.0,0.0,0.0,0.7,2.0,0.7,2.0,0.0,0.0,0.0
legend; x=0.37,y=0.8, height=0.1, nchar=11
PUERTO RICO
plot; name=puerto_rico, shadeall, pattern=1,13
end plot;
reorg; x=-14.6, y=-1.3
linwid; 4
outline; npoint=5
0.0,0.0,0.0,17.75,22.65,17.75,22.65,0.0,0.0,0.0
legend; x=6.775, y=16.8, height=0.3, lwidth=4, nchar=30
STATUS OF GEOLOGIC MAP INDICES
legend; x=7.725, y=16.0, height=0.3, lwidth=4, nchar=23
SATURDAY, MARCH 1, 1980
linwid; 1
plot; name=stat90, textfield=1,6, refclear=, height=0.1,
select, selshade
13
13
13
1
13
1
1

N WO OOy N P
el el)

APPENDIX B

LISTING 4.~ Formation of the command file for verplot and an example command file —Continued

13 1 12
16 1 13
17 1 13
18 1 13
19 1 13
20 1 13
21 1 13
22 1 13
23 1 13
24 1 1
25 1 1
26 1 1
27 1 1
28 1 13
29 1 13
30 1 13
31 1 13
32 1 13
33 1 1
34 1 13
35 1 13
36 1 13
37 1 13
38 1 13
39 1 13
40 1 1
41 1 1
42 1 1
45 1 13
46 1 13
47 1 1
48 1 12
49 1 13
50 1 1
51 1 13
53 1 1
54 1 13
55 1 1
56 1 13

END PLOT;

plot; name=stat90, textfield=1,6, height=0.1, select,selshade
10 1 1
44 1 1

end plot;

plot; name=stat90, select, selshade
11 1 1
25 2 1
25 3 1
51 2 13

end plot;

48 GEOINDEX

LISTING 5.—Commands for verplot

END PLOT

Purpose:
The command END PLOT informs the program that the information describing the plotting of a file is at an end. The only use is in conjunc-
tion with the PLOT command.
Command usage:
END PLOT; (or end plot;)—The program will continue reading the command file until the end plot command is reached.

LEGEND

Purpose:
The command LEGEND plots the character string given in a manner described by the keywords.

Command usage:
LEGEND; (or legend;) (keywords) followed by the text string on the next record.

Required keywords:

2= (or X=)—zx coordinate of start of text string

y= (or Y=)—y coordinate of start of text string

height= (or HEIGHT =)- Height of each character

nchar= (or NCHAR =)—Number of characters in text string on next record (Always start in column 1 and use no more than 80 characters,
which can be either uppercase or lowercase (or mixed).)

Optional keywords:

angle= (or ANGLE =)-The angle at which the text string is plotted (Default = 0 degrees.)
lwidth= (or LWIDTH =)—The width of the line in dots (Default = 1 dot wide.)

LINWID

Purpose:
The command LINWID changes the line width of all subsequent plotting to the value given.

Command usage:

linwid; (or LINWID;) (number)—The number must be 1, 2, 8, 4, or 5 because the Versatec software will accept no others. If no number is pres-
ent or an error is in the data, the default value of 1 will be used.

OUTLINE
Purpose:
The command QUTLINE plots an outline whose coordinates are on the following record(s).

Command usage:
outline; (or OUTLINE;) (keywords)—Followed by the record(s) containing the data points.

Required keywords:
npoint= (or NPOINT =)-The number of data pairs of z, y coordinate points that follow (All coordinates must be separated by commas. No
more than 20 pairs can be used, with no more than 20 values per record.)

Optional Keywords:
shade= (or SHADE =)—Tells the program to shade this outline and gives the reference number of the pattern to use in shading (The valid
reference numbers are 1 through 20 with any other number defaulting to 1. However, numbers 14 through 20 are blank patterns that
are reserved for use with the PATTERN command.)
noline (or NOLINE)—Causes the outline not to be plotted (This should not be used unless the shade option is also used).

PATTERN
Purpose:
The command PATTERN reads data values and stores these in an array that will be used as a pattern for shading at some later point in the
program.

Command usage:
pattern; (or PATTERN;) (keywords)—Followed by one or more records containing the data values.

APPENDIX B 49
LiSTING 5.—Commands for verplot—Continued

Required keywords:
refnrum= (or REFNUM =) —The reference number to be used in identifying this pattern (It must be from 14 through 20.)
numword= (or NUMWORD =)—The number of data words on the following record(s) (This number can only be 1, 2, 4, 8, or 16. Any other
number will give an error. The maximum number of words accepted by Versatec is 16, and all the others divide evenly into 16.)
type= (or TYPE =)—The only choices are INTEGER or OCTAL. The data values start on the next record. The program will read as many
records as necessary to satisfy the numword variable. All data values are separated by commas.

PLOT
Purpose:
The command PLOT reads the name of a file, attachs and opens it for input and plots the data in that file according to the other keywords or
to the default values. '

Command usage:

plot; (or PLOT;) (keywords)— Followed by records containing a selective records list. The END PLOT command must always be used in con-
junction with this.

Required keywords:

name= (or NAME =)—Contains the name of the file to be plotted (Not more than 20 characters may be used.)
Example: PLOT; NAME = filename
END PLOT;
This constitutes the simpliest use of the plot command.
Note: This command will plot only those files whose outlines have a header card where the number of pairs of points in the outlines are listed
in integer format in columns 16-20. The data points will follow in (12F6.3) format with the first data point being a text position.

Optional keywords:

height= (or HEIGHT =)—The height of each character in the header card text; default value of 0.14 in.

noline= (or NOLINE =)-Does not plot the outline but allows all other options, such as character plotting and shading (Default is to plot the
outlines.)

pattern= (or PATTERN =)-Followed by a series of numbers (The first is the count of how many more numbers follow. The remaining
numbers are a sequence of pattern reference numbers, through which the program will rotate when shading outlines. Default pattern se-
quence is 1 through 10.)

refclear= (or REFCLEAR<=)—Will clear the area around text when shading (This has one major problem. The Versatec software does not
have a clearing function. Instead, if two or more areas are given in one shading command, the software will alternate shading and clear
areas as the areas overlap. For our purpose, this is acceptable if the area to be cleared lies entirely within the outline. However, if areas
overlap or the text lies outside, effects will be confusing. Default is not to clear the area.)

select= (or SELECT=)—Will plot only those outlines listed in the selective file following the keywords.

selshade= (or SELSHADE =)—Will shade only those outlines that have a valid pattern reference number listed in the selective file following
the keywords.

shadeall = (or SHADEALL =)—Will shade all outlines and will rotate through the pattern sequence given (or 1-10 by default) (An outline pat-
tern can be changed by listing a valid pattern reference number in the selective file following the keywords.)

textfield= (or TEXTFIELD =)-Followed by a series of numbers, the first number gives the count of how many numbers follow. The remain-
ing numbers are a sequence representing some of the eight fields on the header cards. These are numbered from 1 to 8 from left to right.
This sequence of numbers tells what fields will be plotted and in what order. Any blank or zero valued field will be ignored.

Example: text field=3,8,1,6
There are three fields to plot. First field 8, then field 1, and then field 6. Each field will be lined up underneath the previous one.

The keywords may occupy more than one record. All records containing keywords, except the last, must have a comma as the last entry
on the record. This is the only indication that there are more keywords given.

A keyword with associated data values must be contained on one record. They cannot span records.

The selective file following the keywords comprises records containing the reference number (field one of the header card), the
subfeature number (field three), and an optional pattern reference number. These are all five character fields contained in column 1
through 15 of the record. The two outline identifiers must be in this field exactly as they are in the five character header card field. The pat-
tern reference number is in format (I5).

REORG

Purpose:

The command REORG changes the software origin of the plot file. This has the effect of moving the subsequent plotting commands in rela-
tion to those done previously.

50 GEOINDEX

Li1STING 5.~ Commands for verplot —Continued

Command usage:

reorg; (or REORG;) (keywords)
One, but not both, of the following keywords must be present. If one is missing, the default of 0 for that value will be used. A movement to

the left or down is negative; right or up is positive.

Keywords:
z= (or X=)—The amount of movement (inches) in a left or right direction
y= (or ¥ =)-The amount of movement (inches) up or down

SCALE
Purpose:
The command SCALE changes the scale of all subsequent plotting.

Command usage:

scale (or SCALE) (number)
A blank data value or an error will default to a scale of 1.

SYMBOL

Purpose:
The command SYMBOL changes the character plotted when a single point is encountered.

Command usage:

symbol (or SYMBOL) (number)
The number represents some character. Any error in the number will default to a small triangle (number 2).

APPENDIX B

HOW TO RUN PIN90 ON MULTICS

Purpose of the program: pin90 will plot the U.S. map
and then, if the user wishes, will plot numbers, sym-
bols, and outlines using GRASP files and will also plot
the grid file.

Input files: file14—-stat90; file15—-GRASP files;
file16 —grid file

Output files: None (The only output is the plot on the
screen.)

To run the program:

A. Before running pin90 for the first time you must link

it to your directory by typing:

Ik >udd >Geoindx>PPorter> pin90

Ik >udd >Geoindx > PPorter>enlrg

Ik >udd >Geoindx>PPorter>indiv

Ik >udd >Geoindx >PPorter>min-max

Ik >udd >Geoindx > PPorter> plocv

Ik >udd >Geoindx>PPorter> grid

B. To run, type: pin90

C. The user will then respond to the following ques-

tions:

1. NEED SYMBOL CODES? (ENTER Y FOR
YES.) If you want to see the symbol and cor-
responding number, type y and cr. Other-
wise, just enter cr and proceed to C3.

. TAP 1 AND RETURN KEY WHEN READY

. Screen is erased.

. ENTER SYMBOL NUMBER AND FILE TO
BE PLOTTED. Example: 43silver You may
enter as many as five files (maximum
number of eight characters for file name).
After each entry, enter cr and the message
will appear again. When you have entered
the last file or if you have no entry, just
enter cr.

5. FOR SYMBOL AND NUMBERS (WITH
PLOTTING), TYPE 1; FOR SYMBOL AND
(OR) OUTLINE (NO NUMBERS), TYPE 2;
FOR NUMBERS ONLY (NO SYMBOLS
OR PLOTTING), TYPE 3. If you had no en-
try for C4 just enter cr. Otherwise, type in
the number and cr.

Screen is erased.

ENTER TITLE FOR MAP. Example: U.S.
MAP

8. TO PLOT INDIVIDUAL STATES, ENTER

i]

ae

51

1-FOR ENTIRE U.S., ENTER 2. You
must enter 1 or 2.

9. TO PLOT GRID, ENTER 1. If you want the
grid, type 1 and cr; otherwise just type cr.

10. IF YOU WANT A HARD COPY UPON COM-
PLETION, TYPE C.

11. Screen is erased. If you entered 1 in response
to C8, the following will appear on the
screen:

GIVE NUMBER OF STATES TO BE

PLOTTED

LIMIT OF 10 IN ASCENDING ORDER

MUST BE A 2 DIGIT NUMBER, 01-51
For example, to plot the States of Illinois
(12), Indiana (13), Kentucky (16), Ohio (34),
and West Virginia (49), respond with the
code number for each State, as follows:
1213163449.

This means a group of as many as 10
States. The States and their corresponding
numbers appear on listing 6.

Screen is erased. The States along with
GRASP files or grid file are plotting; if the
user typed c in response to C10, a hard copy
will be made automatically at this time.

12. FOR AN ENLARGEMENT OF PART OF
THIS PLOT, TYPE Y. Type y and cr if you
want an enlargement; otherwise enter cr
and proceed to C17.

13. FOR A HARD COPY AFTER ENLARGE-
MENT, TYPE C. If the user wants an
automatic hard copy, type ¢ and cr; other-
wise just enter cr.

14. POSITION CURSOR AT LOWER LEFT OF
DESIRED AREA: TYPE C. Postion the
vertical and horizontal cursors at the desired
location, type ¢ and cr.

15. POSITION CURSOR AT UPPER RIGHT OF
DESIRED AREA, TYPE C. Position the
vertical and horizontal cursors at the upper
right location, type ¢ and cr.

16. Screen is erased. An enlargement of the
desired area is plotted, and an automatic
hard copy is made upon completion if the
user typed c in response to C13.

52 GEOINDEX

LISTING 6. —The 48 conterminous States and District of Columbia and their corresponding two-digit numbers that are used for plotting individual
States
[These are codes used on file stat 90 (not FIPS codes)]

Alabama AL 01
Arizona, AZ 02
Arkansas AR 03
Calfornia CA 04
Colorado CO 05
Connecticut CT 06
Delaware DE 07
District of Columbia DC 08
Florida FL 09
Georgia GA 10
Idaho ID 11
Ilinois IL 12
Indiana IN 13
Towa 1A 14
Kansas KS 15
Kentucky KY 16
Louisiana LA 17
Maine ME 18
Maryland MD 19
Massachusetts MA 01-04
Michigan MI 21
Minnesota MN 22
Mississippi MS 23
Missouri MO 24
Montana MT 25

Nebraska NE 26
Nevada NV 27
New Hampshire NH 28
New Jersey NJ 29
New Mexico NM 30
New York NY 31
North Carolina NC 32
North Dakota ND 33
Ohio OH 34
Oklahoma OK 35
Oregon OR 36
Pennsylvania PA 37
Rhode Island RI 38
South Carolina SC 39
South Dakota SD 40
Tennessee ™ 41
Texas TX 42
Utah uT 43
Vermont vT 44
Virginia VA 45,46,47
Washington WA 48
West Virginia wv 49
Wisconsin WI 50
Wyoming wYy 51

APPENDIX C. COMPUTER-PROGRAM
REFERENCE

EXEC_COM NAME: COMTAPE.EC

Awuthor: Pearl Porter

Purpose of the program: comtape.ec reads an outside
ASCII tape into the Multics system and writes the
tape into a segment given by the user. Comtape.ec is
written in Multics command language. All the pro-
grams in the Geoindex are written in Fortran IV
unless otherwise specified.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: ec comtape nnnnnn segname

Arguments:
-ids— Input description of the tape
-ods— Output description

Subroutines called: None

copy_file -ids "tape_ibm_ &1

-nlb -nb 2

Common data referenced: None

Input file: refNM on magnetic-tape

Output file: refNM

Arrays used: None

Called by: None

Error checking and reporting: The comtape.ec seg-

ment will work for tapes that are unlabeled and se-
cond in the file sequence and have fixed length format,
density of 800, record length of 80, and block size of
800. After the comtape.ec has been executed, do not
try to type in other commands until the process has
been completed because this can cause errors.

Constants: None

Program logic:

1. An outside ASCII tape is read into the Multics
system and written to a segment that the user
specified.

2. The user will receive a count number of the records
copied onto SEGNAME, and the file will
automatically be dprinted.

-fmt fb -den 1600 -rec 80 -bk

800" -ods "record_stream_ -target vfile_ &2" dp &2

dquit

APPENDIX C 53

PROGRAM NAME: CHKREF

Awuthor: Harold Johnson

Purpose of the program: chkref is used to check the ac-
curacy of the reference files. It checks whether certain
records are integer or real numbers, whether the
records exceed their prescribed lengths, whether the
State number is consistent, whether the records are in
the correct order within each individual reference,
whether the separate references are in correct order,
and whether the first record is correct.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: None

Arguments: None

Subroutines called: assoc, setup_chkref,
clean_chkref, checkitem_chkref, reup_chkref,
rfskip__chkref

Common data referenced: None

Input files: refNM, matrix

Output files: refINM

Arrays used: None

Called by: None

Error checking and reporting: Messages are written to
the interactive user when the State number is wrong,
when the id number is out of order, when the item
number is out of order, when the initial item number
for a reference is not 2, when the State name is wrong,
and whenever a read error occurs. The user is in-
formed of the total number of records that were read
in the reference files.

Constants: None

Program logic:
1. The file to be checked and the control file matrix are

attached to Fortran numbers 30 and 22 by calling
assoc.

c **x%x%x%%% CHKREF PROGRAM #*%*%

c SEPT. 16, 1976 H. JOHNSON

c
external io(descriptors)

2.

10.

11.

Vectors itype, ichar, and item are set up by the
subroutine setup, which describes the type and
number of character postions allocated to each
reference item.

Subroutine clean puts blanks into the words of ifile,
jfile, and ifilet.

. A reference record is read, noting its State number

istate, reference number jf, and item number jtm.
The reference data on this record is read into jfile.

. Subroutine checkitem uses jtm to check if the type

of data in jfile is integer or floating point as
prescribed by itype for this jtm and whether or
not jfile lies in limits prescribed by ichar.

jfile is read into ifile1 and reup_chkref transfers
information from jf, jtm, and jfile into if, itm, and
ifile, respectively.

. A new record is read into jstate, jf, ftm, and jfile,

and they are checked by checkitem_chkref.
istate and jstate are compared to see if they are
identical.

Where if is greater than jf, the if numbers are out of
order, and an error message notes this; where if is
less than jf, a new reference file has been reached,
and it is checked to see if item number jtm is a 2.

Where if is equal to jf, item numbers are compared
to see if jtm is greater than itm. Unless itm is 87
(indicating that there are repetitions in this
reference), an error message appears.

After an error or after satisfactorily passing each
test, reup_chkref is called to move jf, jtm, and
jfile to if, itm, and ifile. Then control passes to
step 7.

After all records have been checked, ncard, the
number of cards read, is written in a message to
the user.

1977 H. Johnson

THIS PROGRAM IS WRITTEN TO RUN ON THE NEWEST REFERENCE FILES
WHICH ARE MADE UP TO USE WITH THE NEWEST GRASP PROGRAM, IRIS AN

c
c THE FOLLOWING FILES ARE REQUIRED FOR THIS PROGRAM:
c INPUT FILES:

c 22 = "MATRIX" FILE WHICH FORMATS IRIS RECORDS.

c 30 = REFERENCE FILE TO BE CHECKED.

c OUTPUT FILE:

c 06 = MESSAGE FILE.

c

c Converted to Multics February 17,

c

c

\eD C

c EATE

o
S

GEOINDEX
THIS PROGRAM IS DESIGNED TO RUN THROUGH THE REFERENCE FILES AND

c
c CHECK FOR THEIR ACCURACY.

c IT CHECKS WHETHER THE FILE IS INTEGER OR REAL IF IT IS SUPPOSED
\c TO

c BE

c IT CHECKS IF THE FILE IS WITHIN THE PRESCRIBED LIMITS

c IT CHECKS ON THE STATE NUMBER

c IT CHECKS ON THE ORDER OF THE SEPARATE FILE SUBJECTS.

c IT CHECKS ON THE OREDER OF THE ITEMS WITHIN A SINGLE SUBJECT.

c

c

dimension itype(46),ichar(46),item(46,10),if1le(73),jf1ile(73)
dimension ialpha(5),ifilel (50)
character*32 filename
data iblank/" "/
call io ("attach","file22","vfile ","matrix","-append","-ssf")
call io ("open","file22","si")
write(6,890)
890 format(" enter the file name to be checked :")
read 895, filename
895 format (a32)
call io ("attach","file30","vfile ",filename,"-append","-ssf")
call io ("open","file30","si")

c
c
c
c
idim=46
c IDIM IS THE NUMBER OF RECORDS IN THE MATRIX FILE
c
call setup_chkref (itype,ichar,item,idim)
c THIS SET UP THE MATRICES ITYPE(IDIM),ICHAR(IDIM),ITEM(IDIM,IWII
\cDE)
c WHICH DESCRIBE THE TYPE AND NUMBER OF CHARACTER POSITIONS
c ALLOCATED TO EACH ITEM.
c
nfile=73
call clean_chkref(ifile,nfile)
c THIS ROUTINE PUTS BLANKS INTO THE WORDS OF IFILE.
c
call clean_chkref(jfile,nfile)
nfile=40
call clean_chkref (ifilel,nfile)
c
c
c
call rfskip_chkref (ncard)
c THIS ROUTINE READS DOWN FILE 30 LOOKING FOR THE FIRST TRUE RECOR
\eD,
c SKIPPING THE CARDS WHICH MERELY DESCRIBE THE REFERENCE FILE.
c NCARD IS THE KEY NUMBER FOR THE FIRST RECORD.
c IT POSITIONS 30 READY TO READ THE FIRST RECORD.
c

ncard=1

APPENDIX C

read (30,930,end=1000,err=500)istate,jf,jtm, (jfile(k),k=1,73)

930 format (i2,13,1i2,73al)
c
call checkitem chkref(idim,ncard,item,jtm,jfile ,itype,ichar
\c)
c THIS ROUTINE CHECKS IF THE FILE IS INTEGER OR FLOATING POINT
c WHEN ITS ITM NUMBER INDICATES THAT.
c IT ALSO CHECKS IF THE FILE IS CONTAINED WITHIN THE BOUNDARY SET
\cBY
c ITS ITM NUMBER.
c THESE TYPES AND LIMITS ARE READ FROM MATRIX AND FOUND HERE IN TH
\cE
c FILES ITYPE AND ICHAR.
do 5 k=1,40
ifilel(k)=jfile(k)
5 continue
call reup_chkref(itype,ichar,item,idim,if,itm,ifile,jf,jtm,jfile)
c THIS ROUTINE PUTS INFORMATION IN THE J-FILES,JF,JT,JFILE,
c INTO THE IFILES I1F,ITM,IFILE.
c
10 ncard=ncard+l
read(30,930,end=1000,err=500)jstate,jf,jtm, (jfile(k),k=1,73)
call checkitem chkref(idim,ncard,item,jtm,jfile,itype,ichar)
if(istate .eq. jstate) go to 20
write(6,940)ncard
940 format (" THE STATE NUMBER IS WRONG ON RECORD NUMBER ",i6)
write(6,931)jstate,jf,jtm,jfile
931 format(12,1i3,i2,73al)
call reup_chkref (itype,ichar,item,idim,if,itm,ifile,jf,jtm,jfile)
go to 10
c
20 if(if .le. jf) go to 30
write(6,950)ncard
950 format (" THE IF NUMBER IS OUT OF ORDER IN RECORD NUMBER ",i6
\c)

write(6,931)jstate,jf,jtm,jfile
call reup_chkref (itype,ichar,item,idim,if,itm,ifile,jf,jtm,jfile)

go to 10

c

30 if(if .1t. jf) go to 40
if((itm .lt. jtm) .or. (itm .eq. 87)) go to 35
write(6,960)ncard '

960 format (" THE ITEM NUMBER IS OUT OF ORDER AROUND RECORD NUMBER",i6)
write(6,931)jstate,jf,jtm,jfile

35 call reup_chkref(itype,ichar,item,idim,if ,itm,ifile,jf,jtm,jfile)

go to 10
c
40 if(jtm .eq. 2) go to 50
write(6,970)ncard
970 format (" THE ITEM SHOULD BE 2 IN RECORD NUMBER ",i6)

write(6,931)jstate,jf,jtm,jfile
call reup_chkref(itype,ichar,item,idim,if,itm,ifile,jf,jtm,jfile)
go to 10

55

56 GEOINDEX

c
50 do 60 k=1,40
if(ifilel(k) .ne. jfile(k)) go to 70
60 continue
c
call reup_chkref (itype,ichar,item,idim,if,itm,ifile,jf,jtm,jfile)
go to 10
c
70 write(6,980)ncard
980 format (" THE STATE NAME IS WRONG IN RECORD NUMBER ",i6)
write(6,931) jstate,jf,jtm,jfile
call reup_chkref(itype,ichar,item,idim,if,itm,ifile,jf,jtm,jfile)
go to 10
c
c
500 write(6,990)ncard
990 format (" THERE WAS A READ ERROR ON RECORD NUMBER '",i6)
call reup_chkref(itype,ichar,item,idim,1f,itm,ifile,jf,jtm,jfile)
go to 10
c
1000 write(6,1900)ncard
1900 format (" YOU REACHED THE EOF AFTER READING ",i6," RECORDS.")
c Ikkkhkhkkhhhhhhhokhkhkkhhhhhhdhhhhkhxhhhhkkhkhrkhhkhkkkhkkkk
call io ("close","file22")
call io ("close","file30")
call io ("detach","file22")
call io ("detach”","file30")
c ARIIKRAKI KA IR AK AR KRR AR R KKK R I R IR A KRAKRRKR IR AR AR AR R KA AR KRR A kX
stop
end

C *hkkkkkkk END *hhkhkkkhkkkxk

SUBROUTINE NAME: RFSKIP_CHKREF

Author: Harold Johnson

Purpose of the program.: riskip_chkref checks to locate
the record having reference number 1 and item
number 2, which should be the first record in most
reference files.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call rfskip__chkref (j)

Arguments: j—The record number in the reference file,
which has reference number 1 and item number 2

Subroutines called: None

Common data referenced: None

Input files: refNM

Output files: None

Arrays used: None

Called by: chkref

Error checking and reporting: The record number of the

beginning record is always reported. If no correct first
record is found, a message to that effect is sent to the
user.

Constants: None

Program logic:

1. Each record is read to determine its reference
number, /b, and its item number, ic.

2. These are compared with 1 and 2 until a match is
found. This matching record is reported to the
user.

3. If no match is found, a warning message is written to
the user, the file is closed, and control returns to
chkref.

APPENDIX C 57
¢ *xxkkwx SUBROUTINE RFSKIP_CHKREF *khhknn

Cc *
Cc L EE R E R SRR SRS SRR SRS EEEEEEEEEEESRESRRSEINESSEESS SRS S & 88 8
c
subroutine rfskip_chkref(j)
data ione/" 1 "/,itwo/"2 "/
)=1
1 read(30,900,end=100)1asibsic
9090 format(alsatbsral)
if(ib .eq. ione .and. ic .eqg. ic) go to 10
=i+
go to 1
10 write(6,910))
92140 format (" THE REFERENCE DATA BEGINS AT THE",i14,"TH RECORD")
backspace 30
return
(o I 2 2SS 2SR R R RS EEIEE SRR EERE RS R EE RS E S S SRS SRS S EE SRR LR NN S

100 write(6,920)

920 format(" THERE WAS NO FIRST RECORD FOUND! what's wrong?")
rewind 30

return
end
SUBROUTINE NAME: CLEAN__CHKREF Subroutines called: None

Author: Harold Johnson Common data referenced: None

Purpose of the program: clean_chkref inserts blank ém; ut {L lefe: 1.\I§ne
characters in each word of the vector ifile. utput fi S', ; f(?ne

Data base: Geoindex Arrays used: ifile ;

Computer: Honeywell Series 60 (level 68) Called by: chkref, reup_chkre

Operating system.: Multics Error checking and reporting: None

Calling sequence: call clean__chkref (ifile,nfile) Constants: None

Arguments: Program logic: y
ifile- A vector 1. The blank character is inserted into each word of ifile
nfile — The number of elements in ifile by a do loop.

c **kkkkk SUBROUTINE CLEAN_CHKREF ***xakix

subroutine clean_chkref(ifileosnfile)
THIS ROUTINE PUTS BLANK WORDS INTO THE FILE IFILE.

HJohnson February 16, 1977

O 0O o006

dimension ifile(nfile)
data iblank/" "/
do 10 k=1,nfile
ifile(k)=1iplank
10 cont inue
return
end
Chrxksnxkkhx END CLEAN_CHKREF #xxxxhkaii

58

SUBROUTINE NAME: REUP_CHKREF

Awuthor: Harold Johnson

Purpose of the program: reup_chkref transfers the
characters in jfile to ifile.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call reup_chkref (itype,ichar,item,-
idim,if,itm, ifile,jf jtm jfile)

Arguments:
ifile— A vector containing the reference data in a

refer-record

GEOINDEX

Jjfile— The same kind of vector as ifile
Subroutines called: clean__chkref
Common data referenced: None
Input files: None
Output files: None
Arrays used: ifile(73), jfile(73)
Called by: chkref
Error checking and reporting: None
Constants: None
Program logic:
1. clean_chkref is called to put blanks into ifile.
2. Characters in jfile are written into ifile.

c **kxkkx* SUBROUTINE REUP_CHKREF ***kkkkk
subroutine reup_chkref(itype,ichar,item,idim,if,itm,ifile,jf,jtm,]j

\cfile)
dimension itype(idim),ichar(idim),item(idim,10),ifile(73),ijfile(73
&)
¢ H Johnson February 17, 1977
c
if=3f
itm=jtm
nfile=73
call clean_chkref(ifile,nfile)
c
do 10 k=1,73
ifile(k)=jfile(k)
10 continue
return
c Ahkhhkhhhkhhhhhhhhhhhhhhhhhdhhhhhkhhhhhhhhhhhhhhrhhkhkkhkhk
c
end

¢ **kkk%x%x END REUP CHKREF **kkkkk

SUBROUTINE NAME: BLANKCHECK__CHKREF

Author: Harold Johnson
Purpose of the program: blankcheck__chkref checks to
see if the information in the current record being
checked is within the limits prescribed by matrix.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call blankcheck_chkref (ichar,jfile,-
ncard)
Arguments:
ichar— The admissible length of the current reference
item
Jjfile— The vector of characters obtained from the cur-
rent reference record

ncard— The number of the record in the reference file
currently being examined

Subroutines called: None

Common data referenced: None

Input files: None

Output files: None

Arrays used: jfile(73)

Called by: checkitem__chkref

Error checking and reporting: When jfile is too long, a
message explaining the problem, giving the record
number along with a printing of the file jfile and the
number of the erroneous nonblank characters is sent
to the user.

Constants: None

Program logic:

1. All characters after the icharth are compared with

the blank character. Discrepancies are reported.

APPENDIX C 59

C **xkhrkx SUBROUTINE SLANKCHECK_CHKREF,FORTRAN *awkkix
subroutine blankcheck_chkref(ichars,jfilesncard)

this routine checks to see if the file jfile(73) is contained

within ichar spaces by seeing if the other spaces are blank

H Johnson February 16, 1977

O 0000

dimension jfile(73)
data iblank/" "/
1 do 10 k=1,4
i=ichar+k
if(jfile(i)
10 continue
return
20 write(6,900)ncardsi
909 format ("
CHARACTER ",i2,"

eNEe,

IS NOT BLANK'™)

THE FILE IS TOO LONG ON RECORD NUMBER

iblank) go to 20

",i6+" BECAUSE

write(6,901)(jfile(k),k=1,73)

901 format ("

return

THIS DATA IS

",73a1)

Cc B A S SRR ESERRRL SRR Rl RN RN RERRRR R R R

end

C *xxkxx*xEND SBLANKCHECK_CHKREF *xxkakx

SUBROUTINE NAME: TYPECHECK__CHKREF

Author: Harold Johnson
Purpose of the program: typecheck__chkref checks to
see whether the information in the current reference
record represents an integer or floating-point
number when that type is indicated by its item
number.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call typecheck__chref (itype,ifile,ncard)
Arguments: .
itype— One of the type of 1 or 2
ifile— A vector of characters obtained from a record of
the reference file being checked
ncard—The number of the current record being
checked

Subroutines called: None

Common data referenced: None

Input files: None

Output files: None

Arrays used: None

Called by: checkitem__chkref

Error checking and reporting: When ifile is wrong, this

is reported to the user, along with the record number
and copy of ifile.

Constants: None

Program logic:

1. If the item number is 1, each character in ifile is
checked to determine ifitis 0, 1, 2, 3, 4, 5,6, 7, 8, 9,
or blank.

2. If the item number is 2, each character is compared
with these same integers and then with a period.
The program checks that exactly one period occurs.

3. Any discrepancies are reported to the user.

c ***xxxx% SUBROUTINE TYPECHECK_CHKREF.FORTRAN #***kx*%
subroutine typecheck_chkref (itype,ifile,ncard)
dimension ifile(73),number(12)

c
¢ this subroutine checks whether the type indicated by itype
¢ corresponds to what is found in ifile.

¢ H Johnson February 16, 1977

60 GEOINDEX

c

data number/"0 LS | nom2 ","3 ", "4 ","S5 ","6
\C”,“?
&","8 ","9 ",“ ",". "/
1 if(itype .eq. 2) go to 20
c
c WHEN ITYPE IS 1 WE TEST TO SEE IF IFILE CONTAINS ONLY INTEGERS.
do 10 j=1,20
do 15 k=1,11
if(ifile(j) .eq. number(k)) go to 10
15 continue
go to 500
10 continue
return
c
c WHEN ITYPE IS 2 WE TEST TO SEE IF IFILE IS A REAL NUMBER.
20 continue
iflag=0

do 30 j=1,20

do 35 k=1,11

if(ifile(j) .eq. number(k)) go to 30
35 continue

if(ifile(j) .ne. number(l2)) go to 510

iflag = iflag+l

if(iflag .ne. 1) go to 510

30 continue
if(iflag .ne. 1) go to 510
return

c

500 write(6,920)ncard

920 format (" THERE IS SUPPOSED TO BE AN INTEGER IN RECORD NUMBER ",1i6
\c)
write(6,921)ifile

921 format (" THIS DATA IS ",73al)
return
c
510 write(6,930)ncard
930 format (" THERE IS SUPPOSED TO BE A REAL NUMBER IN RECORD ",
\ci6)
write(6,921)ifile
return
c AR RIAKRRI IR AKKRIKI AR ARK A KA AR ERIRRI AR A AR Ak bk hkk ko
c
end

¢ ***%*%* END TYPECHECK_CHKREF #**k*x%x&%

SUBROUTINE NAME: LOCAT1_CHKREF Computer: Honeywell Series 60 (level 68)
Awuthor: Harold Johnson Opefr:ating system: Multics o eae s
Purpose of the program: locati_chkref determines the Ca‘llmg sequence: call locatl _chkref (jtm,idim,item,-
line and column of matrix in which a given item line,kolumn)

number occurs by using the matrix, item, which was | Arguments:
constructed from matrix. jtm — An item number of the current reference record

Data base: Geoindex idim —The number of rows in item

APPENDIX C 61

line —The line in item where jtm is located
kolumn —The column in item where jtm is located

Subroutines called: None

Common data referenced: None

Input files: None

Output files: None

Arrays used: item(idim,10)

Called by: checkitem__chkref

Error checking and reporting: Done by check-
item__chkref when line = 0
Constants: None
Program logic:
1. jtm is compared with each element of item using a do
loop, checking by columns first, since most items
occur in the first column.

¢ **xkxkkx SUBROUTINE LOCATI_CHKREF **kkkxx
subroutine locatl_chkref(jtmsidimsitems,lineskolumn)

dimension item(iaim,10)
line=0

kolumn=0

go 10 k=1.,10

do 10 j3=1,idim

if(jtm .eq.
continue
return
line=j
kolumn=k
return

10

29

item(j,k)) go to 20

C Kok gk dkod kok Kok ok ok ok ok sk Kk ok dok ok ok ok k ok ok ko dk ek g gk ko dk ok ok k ok ke ke k%o ok ok ok ke ke ok

c
end
C *kkkkxx END LOCAT1_CHKREF

Kok ok ok ok okok

SUBROUTINE NAME: CHECKITEM__CHKREF

Awuthor: Harold Johnson
Purpose of the program: checkitem_chkref checks
whether jfile is integer if jtm is 1 or floating point
when jtm is 2. It checks whether the number of
nonblank characters in jfile is at most ichar(lin).
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call checkitem_chkref (idim,ncard,-
item,jfile,itype,ichar)
Arguments:
idim —The number of lines in matrix
ncard —The number of records that have been read in
the reference file
jtm —The item number on the current record being
checked
jfile —The reference data in the current record, a vec-
tor
itype —The vector of types from matrix

ichar—The vector of maximum allowable lengths
from matrix

Subroutines called: locati__chkref, typecheck _chkref,

blankcheck_chkref

Common data referenced: None

Input files: None

Output files: None

Arrays used: jfile(73), item(idim,10), itype(idim),

ichar(idim)

Called by: chkref

Error checking and reporting: When locatt_chkref

cannot match jtm with any item number in item, a
message is written along with the file jfile to the user.

Constants: None

Program logic:

1. locat1i_chkref is called to determine which line of
matrix contains jtm.

2. If itype(line) is 1 or 2, typecheck__chkref is called to
check whether jfile is a character representation of
integer or floating-point data.

3. blankcheck __chkref is called to check whether jfile
contains at most ichar(line) nonblank characters.

62 GEOINDEX

c **kxkx**x SUBROUTINE CHECKITEM_CHKREF **%xkkx%
subroutine checkitem_chkref (idim,ncard,item,jtm,jfile,itype,ichar)
dimension jfile(73),item(idim,10),itype(idim),ichar(idim)

H Johnson February 16, 1977

WHICH CONTAINS THE ITEM =

OO0 0~0 000000

if(line .gt. 0) go to 2
write(6,900)ncard
900

\e¢)
901

write(6,901)jfile
format (" THIS DATA IS
return

WHEN THE TYPE OF THE ITEM IS
if(itype(line) .gt. 2
ity=itype(line)

n

N

wvio 00 un

0 ich=ichar(line)

format (" THE MATRIX FILE DOES NOT CONTAIN THE ITEM ON

.GT.
«Or

THIS CHECKS TWO THINGS ABOUT JFILE.
DOES THE FILE CONTAIN INTEGERS OR FLOATING-
POINT NUMBERS WHEN JTM IS 1 OR 2?

IS THE FILE CONTAINED IN THE LIMITS SET BY MATRIX FOR THIS ITEM?

call locatl_chkref(jtm,idim,item,line,kolumn)

THIS SUBROUTINE LOCATE FINDS THE LINE AND COLUMN OF MATRIX
JTM.

RECORD ",i6

",73al)

CHARACTER.
to 50

2 JFILE CAN BE ANY

itype(line) .eq. O)go

call typecheck_chkref (ity,jfile,ncard)
THIS SUBROUTINE CHECKS WHETHER THE TYPE INDICATED BY
CORRESPONDS TO WHAT IS FOUND IN JFILE.

ITYPE (LINE)

call blankcheck_chkref (ich,jfile,ncard)

0

ICHAR(LINE) SPACES.

0

return

THIS CHECKS TO SEE IF JFILE IS CONTAINED IN

c khkhkhkhhkhkhkhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhkhkhhhhhhkd

end

c ***%x*k*x*END CHECKITEM_CHKREF ***x*xkk%

SUBROUTINE NAME: SETUP_CHKREF

Author: Harold Johnson

Purpose of the program: setup__chkref reads the file
matrix to construct vectors itype and ichar and
matrix item that indicates for each item in the
reference file its type, its allocated space, and its item
number.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics
Calling sequence: call
ichar,item,idim)
Arguments:
itype—The vector of length idim whose kth entry is
the type of the kth kind of record in matrix (integer,
floating point, or alphanumeric)
ichar-The vector of length idim whose kth entry is
the maximum allowable length of the kth kind of
record described by matrix

setup_chkref (itype,

APPENDIX C

item—The jdim by 10 matrix giving the item
numbers in matrix allocated to the various kinds of
records
idim — The number of records in matrix
Subroutines called: None
Common dato referenced: None
Input files: None
Output files: None
Arrays used: None
Called by: chkref

63

Error checking and reporting: When matrix does not
contain exactly the number of records indicated by the
value of idim, an error message is sent to the user.

Constants: None

Program logic:

1. Records in matrix are read into a7, a2, itype(j), b1,

b2, ichan(j), c1, c2, (item(j,k),K=1,10).

2. When the EOF of matrix is sensed, the number of

read records is compared with idim to see whether

they are equal.

c ***%% SUBROUTINE SETUP_CHKREF **k&kkx%
subroutine setup_chkref (itype,ichar,item,idim)
dimension itype(idim),ichar(idim),item(idim,10)

i=0
1 j=j+1
read(22,900,end=100)al,a2,itype(j),bl,b2,ichar(j),cl,c2,c3,(item
\C(jsk),
&k=1,10)
900 format(2a4,12,2a4,i6,2a4,al1,10i3)

go to 1
100 if(j-l.eq. idim)go to 200

write(6,910)j,idim
910 format (" J = ",i3," BUT IDIM = ",i3)
200 return
¢ khkkhkhkhhkhkhhkhkhhhkhhhhhhhhhkhhhhhhhkhkhhhkhhkhhhhhkhhkkhkhkhkkhk
c
c

end

c **x**x%* END SETUP_CHKREF #**k*%

EXEC_COM NAME: GEOFMT.EC

Authors: Kevin W. Laurent, Larry C. Harms, and
Pearl Porter
Purpose of the program: geofmt.ec executes a series of
command lines and routines without user interven-
tion.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: ec geofmt page lines nbipp
Arguments:
page—Number of lines on the page
lines —Number of lines needed at bottom of page to
write a complete reference
nbipp-Used to designate whether or not the
proportional-space printer is to be used
Subroutines called: geofmt, geofmt.qedx,
geofmt2.qedx, geofmt3.qedx, geofmt4.qedx are all
executed.
Common data referenced: None

I Input files: None

‘ Output files: None

Arrays used: None

Called by: None

Error checking and reporting: The user must enter the
arguments when executing geofmt.ec or she will
receive a message stating the current buffer and level
and the commands that have not been executed. This
same message will appear if the user asks for too
many references to be processed at one time. We
recommend that 550 references be the maximum
number processed at one time.

Constants: None

Program logic:

1. A command is given to turn off the COM-
MAND__LINE to prevent the commands from be-
ing written out.

2. The file name given by the user is attached to file70.

3. The output from geofmt, geofmt.data, is attached
to file11.

4. The fortran program geofmt is executed.

64

No o

10.

QU QUK XK X®EX

io

i0 attach

GEOINDEX

file10 and file11 are detached.

The user is asked if she needs to edit.

If the third argument is nbipp, subroutine geofm-
ta.qedx is executed. Otherwise, subroutine
geofmt.qedx is executed.

DL GEOFMT.RUNOFF. This will delete the old
copy (if one exists).

. FO GEOFMT. RUNOFF; RF GEOFMT; FO is a

command to direct geofmt.runoff to a segment,
and RF will run off geofmt; CO directs output
back to the terminal.

The user is queried whether she wants 7 columns or
not. This is a combination of 4 on the first page
and 3 on the next page and so forth. If she
responds yes, geofmt2.qedx is executed. If she

/* The geofmt exec_com
create 4

commanu_Line off

/* run reformat program */

attach filel10 vfile_ [response

filell vfile_ geofmt.data

geofmt

&
&
io0

io detach

&
&
&

filel0
filel?

detach

/* Edit geofmt.data =/

sif [query "Do you need to edit?"]
&then

&else &goto nextstep

Einput_Lline off

&attach

gx

r geofmt.data

estty -modes (L3880

eioa_ "Edit."/Enter "'"g""
&detach

8

&label nextstep

&

stty -modes L1132

&

g /* create runoff segment
&

&81f [equal o3
&then gx

"nbi pp'l]
jeofmta &1 &2

11

12

13

14

15

*/

answers no, geofmt3.qedx is executed, and every
page will have four columns.

. DL GEOFMT.COLUMNS. This will delete the old
copy (if one exists).
. If the third argument is nbipp, then embed__tabs

is executed. Otherwise, the next statement is ex-
ecuted.

. Four segments called overlay1, overlay2, overilay3,

and overlay4 are combined, using the overlay
command, into one segment called geofmt.col-
umns.

. Eight segments created during this process are

deleted.

. Quit,

is used to perform steps necessary to
columnar print of

input reference data., *x/

"ENTER FILE NAME:"]

to exit editor,"”

APPENDIX C

8else gyx yeofmt &1 &2

&

& /* put runoff output
&

dl geofmt.runout -bf

fo geofmt.runouts,rf geofmtsco
&

g /* break output
&

&if C[gquery "DO YOU WANT 7 COLUMNS?"]
&then gx yeofmtl &1

&else gx geofmt3 1

&

& /* create columnized output

&

dlL geofmt.columns -bt
&§if [equal &3 "nbipp"l
&then embed_tabs &1

into segment

65

*/

into 4 files (columns) */

*/

else do "fo geofmt.columns;overlay overlayl overlay2 -in 34 overlay3 -in

867 overlay4 =-in 100 -pl ¥1.co”
&

& for Linolex =-- yx geofmté &1
g
& /* delete intermediate segments x/
&
dl ygeofmt.(runoff runout data) ~-bf
dl overlay(l1 2 3 &) -pf
dquit
SUBROUTINE NAME: GEOFMT.QEDX Program logic:

Authors: Kevin W. Laurent, Larry C. Harms, and Pearl
Porter

Purpose of the program. geofmt.qedx, an edit routine,
creates a RUNOFF segment using geofmt.data,
which was created during the execution of geofmt.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: None

Arguments:
&1 —Passed from the exec__com and contains the page

length (usually 84 or 140)
&2~ Contains the number of lines needed at the bot-
tom of the page to type a complete reference

Subroutines called: None

Common data referenced: None

Input files: geofmt.data

Output files: geofmt.runoff

Arrays used: None

Called by: geofmt.ec

Error checking and reporting: Located in geofmt.ec

Constants: None

1. The two arguments used when executing geofmt.ec
are read into a buffer called args, and the first
argument (which is the page length) is moved to a
buffer called /ines. The second argument (number
of lines needed at bottom of page for printing a
complete reference) is moved to a buffer called
need. These two argements are used with .PL and
NE, respectively, as runoff commands. The in-
itialization routine puts RUNOFF commands into
buffer 0.

2. Segment geofmt.data is read into a buffer called
tile.

3. A special character {, a brace that is made by
depressing the shift key and left bracket key
simultaneously, is appended to the end of
geofmt.data as an end of file indicator.

4. The RUNOFF commands and one line of data at a
time is moved from buffer file to buffer 0.

5. Step 4 is repeated until the special end of file in-
dicator is detected, at which time it is deleted.

6. Write geofmt.runoff.

7. Quit to exit from text editor.

66 GEOINDEX

o(main)

$a

b(file)
Tm{input)

b0

$a

<un 7

«ne \c\b(need)
Vc\b(input)
Ve\f

s/{/7</

d

w geofmt.runoff

a

\f

b(loop)

$a
\c\b(main)
\c\b(loop)
\Vf

b(args)
Im(lines)
Im(need)
b(lines)
1s/\c

/17

b(need)
1s/\c

l/

b0

$a

«pl \b(lines)
LU 30

.ma 0

«Na

.in 7

\f

b(file)

r geofmt.data
$a(\f

b0
\b(loop)

SUBROUTINE NAME: GEOFMT

Authors: Kevin W. Laurent, Larry C. Harms, and Pearl
Porter

Purpose of the program: geofmt reads the reference file,
extracts selected data, arranges it in a predetermined
order, and writes it out as a string of data,
geofmt.data.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: geofmt

Arguments: None

Subroutines called: None

Common data referenced: None

Input files: refNM (NM, two-digit FIPS State code) used
on unit 10

Output files: geofmt.data format(i3,”. ”,396a1) used on
unit 11

Arrays used: iordr(34), istor(34), icoma(34), nuse(34),
icode(34,60), iout(396)

Called by: geofmt.ec

E'rror checking and reporting: Located in geofmt.ec

Constants: None

APPENDIX C

Program logic:

1.
2.

10.
11.
12.

13.

14.

Files are attached and opened in geofmt.ec.

The user is prompted for the State number, start-
ing reference number, and ending reference
number.

The arrays are loaded with blanks except nuse,
which is loaded with zeros.

The reference file is read until the beginning
reference number given by the user, ibgin, mat-
ches the record just read, iref. Load iref into jref.

. The item number is matched against the array ior-

dn(i).
If no match is found, go to step 4.
If item number is 87, load flag87 with an 87.
If equal, icard is loaded into icode(i), item is load-
ed into /stor(i), and a 1 is stored in nuse(i).
Continue steps 4 and 5 until jref no longer equals
iref. |

. If nuse(i), where i equals 13, 15, . . ., 31, equals 1,

load icoma(i) with a 1. Add 1 to ipnct. Load kk
with i.
This routine checks for scales and commas can be
inserted later. ipnct has the number of commas
that will have to be inserted, and kk contains the
number as specified by ordr of the last scale. This
field, kk, will be checked later to determine
whether or not a period and an extra space are re-
quired for output.

The number of characters and spaces in icode(i,j)
is loaded into isave.

. If the current record is a scale, check ipnct.

If ipnct = 0, go to step 12.

If flag87 = 87, go to step 10. If the reference has
an ITEM 87, a comma will be placed after the
scale rather than a period, as more data will
follow the scale.

If ipnct = 1, to to step 11. This indicates that there
is only one scale field and that no punctuation will
be needed.

If icoma(i) = 0, go to step 12. Add 1 to isave. Load
icode(i,isave) with a comma.

Subtract 1 from ipnct.

If the current record is not the year, ITEM 8, go to
step 13. Load icode(i,isave) with a comma.

Go to step 16.

If the current record is not the publisher, ITEM 17,
go to step 14.

If the last character of this record is a period, insert
an extra blank after the period, add 1 to isave,
and then go to step 16.

If the current record is not the series, ITEM 23, go
to the step 14A.

If the current record is ITEM 23, check istor(17) =
60, which means that the series is continued on
another record.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

67

Otherwise, put an extra space after ITEM 23 data.

Go to step 16.

If istor(i) is not = 60, go to 15. Put extra space
after ITEM 60 data.

Go to step 16.

If the current record is not a scale (item 18-22,
61-65), go to step 16. If j = kk, which means this
is the last scale in the reference, load a period at
the end of the field.

Load jout with 1:

Load jout with the scale and necessary commas
separating the field.

Go to step 17.

jout(istart) = icode(i.jj) where jj = 1, save. This
routine will load jout with the current record us-
ing isave as the counter to move the exact
number of characters and spaces for that record.
If i = kk, meaning this record is the last scale, istart
= istart + 1.

This will insert another space after the scale, giving
a total of 2 spaces between the scale and next
record.

If the value of istor(i) is not equal to 86, go to step
19.

If iston(33) equals blank, and istor(34) equals blank,
go to 20.
istart = istart + 1 will give a total of 2 spaces be-
tween the ITEM 86 record and the next record.

If istor(i) is not equal to ITEM 35, go to step 20. If
istor(34) equals blank, go to step 20.
istart = istart + 1. This will insert an extra space
after the ITEM 35 record has been written to
fout.

istart = istart + 1, iout(istarf) = blank space. This
will put a space between each record written to
iout. Repeat steps 8-20 until /i = 34, then go to
next step.

If flag87 = 87, continue reading the records, steps
8-20, until a new reference number is found. Load
flag87 = 0. Write geofmt.data on unit 11 using
jref, (fout(i), i = 1, istart), and format (i3,
“. 7,396al).

If jref = iendref, go to step 24. (This means the
reference number of the record just written is the
last record to be processed. iendref is the ending
reference number given by the user.)

If iend = 1, go to step 24. This is the last record on
the file.

Load jref with iref. iref is the reference number of
the last record read before processing the current
reference data.

Initialize the arrays by loading them with blanks. Go
to step 5.

Stop.

68

OO0 00 0 o000

1U

20

22

30

49

50

60

O o000

80

GEOINDEX

GEOFMT.FORTRAN

This program reads the reference file, extracts selected records
as determined by iordrs, stores them in icode accordinyg to iordr
and writes it out as a string of data.

General outline of program written by Larry Harms of CCD.
Wwritten in detail by Pearl B. Porter, April, 1978

dimension iordr(34),istor(34),nuse(34),icomal(34)

character*1 icard(65),icoue(34,65),i0ut(396)

data iOTdr/Sr‘:SISIQr10:11;37117:25160'39118140119l
461220062+21063+22,66,61067,62+,68,63,69,
64,70,65,86,35,34/

write (6,10)

format (" TYPE IN STATE NUMBER™)
read (5,20) jsta

format(i2)

write (6,22)

ATTENTION For Calif.r ref number will be 4 digits.

format (" WHAT IS YOUR STARTING REFERENCE WNUMBER? (use 3 digits)")
read (5,24) ibgin

ATTENTION Change (i3) to (i4) for California.

format (13)
write (6,26)

ATTENTION For Calif., ref number will bpe 4 digits.

format (" WHAT IS YOUR ENDING REFERENCE NUMBER? (use 3 digits)")
read (5,24) iendref

Initialize arrays to blanks.

do 30 1=1,65
icard(i)=" "
do 40 j3=1,34
do 40 1=1,65
icode(j,id)=" "
do 50 k=1,34
icoma(k)=" "
do 60 1=1,34
nuse (1) =0
istor(i)=" "
do 7J 121,396
iout (i) =" "
ipnct=0
flagd7=0

Read reference file until the current record equals the
vpeginning reference number given by the user,

read (10,110,end=900) istasrirefs,itemsicard
if (iref .ne. ibyin) go to 80

jref = Jref

go to 120

c

c
1390

c
110

120

130

a o o0 oo

149
154

170

O 0 00

175

184

APPENDIX C 69

jref contains the reference number of the data being processed.

read(1d,110,end=155) istarirefr,itemsicard

ATTENTION For Calif., change 13 to 14,

format(i2,13,12,65a31)
if (jref .ne. iref) go to 160
if (flag87 .egq. 87) go to 160

Does record contain an item code = to an item code in iordr

do 130 1=1,34

if (item .eg. i10ordr(i)) go to 140
if (item .eq. 87) flag87 = 87
continue

go to 100

Load icode with icard as determined by iordr, store item in istor
and turn on nuse(i) which indicates there's data for this
particular item.

do 150 j3=1,65
icode(i,j))=1card(j)
istor(id)=item
nuse(i)=1

go to 100

iend = 1

Check scales to determine how many commas will be needed
when written out to filell (geofmt.data).

do 170 1=13,31,2
if (nuse(i) .,eq. 0) go to 170
If nuse(i) = (U, there's no data for this record.
icoma(i)=1
kk=1
ipnct = ipnct+1
continue

Store in isave the total numper of characters and
significant spaces contained in the record.

if (flagd7 .egq. 87) yo to 175
istart = U

do 500 i=1,34

isave = (

if (nuse(i) .eq. 0) go to 50V

do 180 j3=1,05

if (icode(isj) .eqe " ") go to 180
isave=j

continue

Check for scales and if there's more than one scale,
insert commas after the scales.

70

O 60 00

190

230

210

220

230

240

245

250

260

279

GEOINDEX

it ((istor(i) .ge. 18 .and. istor(i) .le. 22) .or.
(istor(i) .ge. 61 .and. istor(i) .le. 65)) go to 190

go to 220

if (ipnct .eg. 0) go to 220
if (flag87 .eg. 87) ygo to 200
if (ipnct .eq. 1) go to 210

if (icoma(i) .eq. U) go to 220
isave=isave+l
icode(isrisave)=",
ipnct=ipnct-1

It 1tem 8 (year), put comma after the year.

if (istor(i) .ne. 8) go to 230
isave=isave+i
icode(is,isave)=","

go to 400

If the publisher has a period at end of field,

two spaces must follow the period.

if (istor(i) .ne. 17) go to 240

if (icode(isisave) .eq. ".") isave=isave+]

go to 400

There must be 2 spaces after the series.

if (istor(i) .ne. 23) go to 245
if (istor(11) .eq. 60) go to 245
isave=isave+1

go to 40U

if (istor(i) .ne. 6U) go to 250
isave = isavet+l
Jo to 400

Wwhen working with scales, precede the scales with "1:"

if ((istor(i) .ge. 18 .and. istor(i) .,le, 22) .or.
(istor(i) .ge. 61 .and. istor(i) .le. 65)) yo to 260

go to 400

if (1 .ne. kk) go to 270

ipnct = 0

if (flag87 .eq. 87) go to 270

isave = isave+1

icode(isisave) =",

iout(istart+i)= "1"

jout(istart+2)= ":"

istart = istart+?

ikorp = 0

if (isave .le. 3)go to 400

if (icode(irisave) .eqg. "»" .oOr.
ikorp = 1

icode(isisave)

«€Qe.

“.")

O 00000000

APPENDIX C

ithi = 3
if (ikorp .eq. 1) ithi = 4
if (isave .ne. 9) go to 280

1fir = 2
isec = 3
go to 330

Depending on the size of the scale fields there will be
from 1 to 3 moves to load the data in the output,
ithi (3rd load) will contain a 3 unless the last
position of the scale is a period or commar, then it
will contain 4, 1isec (2nd) and ifir (1st) will
be loaded according to the number of digits in the
scales. A comma is loaded after ifir and isec.
2380 if (isave .ne. 8) go to 290

isec = 3

ifie = 2

1f (ikorp .eqe 1) ifir = 1

Jo to 330

29U if (isave .ne. 7) yo to 300
isec = 3
ifir = 1
if (ikorp .eqe 1) ifir = 0
go to 330

300 if (isave .ne. 6) go to 310
ifir = 0
isec = 3
if (ikorp .eq. 1) isec = 2
40 to 330

310 if (isave .ne. 5) go to 320
ifir = 0
isec = 2
if (ikorp .eqe. 1) isec
Jo to 330

]
-

320 ifir = 0
isec = 1
if (ikorp .ege 1) isec

0
Load the first (ifir) set of digits followed by comma.

330 ipos = 1
isecmv = isec
if (ifir .,ey. U) go to 350
Jdo 340 jj=sipose.ifir
istart = istart+]
340 iout(istart)=icode(i,jj))
iout(istart+1)=","
istart = istart+1
ipos = i1fir+1
isec = isec+ifir

(2]

370

33840

400

420
425

430

450

500

510

GEOINDEX

Load the second (isec) set of digits followeu by comma.

1f (isec .eq. U) go to 37U
do 360 jj=iposrisec

istart = istart+1
iout(istart)=icode(irjj)
iout(istart+1)=","

istart = istart+1

ipos = i1postisecmv

ithi ithi+isec

Load third (ithi) set of digits.

do 380 jj)=iposr,ithi
istart = istart+1
iout(istart)=icode(i,}))
go to 425

Load iout with icode depending on isave,

do 42U jj=l,isave

istart = istart+1

iout(istart) = icode(isrj)))

if (1 .eqe. kk) distart = istart+1

If any data follows "Also other maps".,
put 2 spaces after "Also other maps".
if (istor(i) .ne. 86) go to 430
if ((istor(33) .eg. " ") .and. (istor(34) .eq. " ")) go to 450
istart = istart+l
go to 450

if (istor(i) .ne. 35) go to 450
it (istor(34) .eq. " ") go to 450
istart = istart+1

Increase istart by 1 so a space appears between records of data.

istart = istart+
iout(istart) = " "
continue

1if (flags7 .ne. 87) go to 525

if (jref .ne. iref) go to 510

if (iend .ne. 1) go to 565

istart = istart-]

if (iout(istart) .eq. "»") iout(istart) = "."
if (iout(istart) .ne. " ") go to 525

go to 510

write the string of data to filell (geofmt.data)

APPENDIX C 73

c
525 write
c ATTENTION
550

(11,55M

For Calif..,
format(i3,". "396a1)
istart = 0

change

c iendref
if (jref
if (iend

«€J.
.ed. 1) go to 1000

jref = iref

jref,Ciout(id,i=1,istart)
i3 to

14,

is the ending reference number given by the user,
iendref) go to 1000

c Initialize arrays before processing next reference.

do 560
iout (1)
do 570 j3=1,34

do 570 1=1,65
icode(j),i) = " "
do 590 1=1,34
icoma(i) = " "
nuse(i) = U
istor(i) = " "
continue

flay87 = 0

go to 120

1i=1,396

560
565

570

59U

9u0
905

write (6,905)
format ("

1000 stop

end

THE BEGINNING RECORD WAS NOT FOUND'")

SUBROUTINE NAME: GEOFMT2.QEDX

Authors: Kevin W. Laurent, Larry C. Harms, and Pearl
Porter

Purpose of the program: geofmt2.qedx formats the file
geofmt.runout into alternating 4 and 3 columnar out-
put acceptable for use by the overlay command to
create a columnarized output segment.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: qx geofmt2 &1

Arguments: &1-1It contains the page length (84 or
140) and was passed from the exec__com, geofmt.ec.

Subroutines called: None

Common data referenced: None

Input files: geofmt.runout

Output files: overlay1, overlay2, overlay3, overlay4

Arrays used: None

Called by: Executed by geofmt.ec

Error checking and reporting: geofmt.ec

Program logic:

1. The initialization routine creates four segments:
overlayl to overlay4. A segment, geofmt.run-
out, is read into buffer, file. A special character is
appended to the segment as an end of file indicator.

2. The loop macro will move a specified number of lines
(determined by the page length argument when
geofmt.ec was executed) into each of the four
overlay segments. Then the specified number of
lines are moved into overlayl, overlay2, and
overiay3. This loop alternates in moving data to all
four segments, and then three segments, until the
end of file indicator is read.

3. All four segments are written.

4. Quit the text editor.

74

b(4col)

$a

\c\b(test)
1,\c\bfargs)m(input)
b(Cinput)

Or overtayl

1,%3w overlay1
\c\pb(test)
1,\c\b(args)m(input)
b(input)

Or overlay?

1,3w overlay?
Vc\b(test)
T,\c\blargs)im(input)
b(input)

Or overlay3

15w overlay3
\c\p(test)
1,\c\b(args)m(input)
b(input)

Or overlayé

1,%5w overlayé
\c\b(3col)

\f

b(3col)

$a

\c\b(test)
1,\c\b(arzs)m(input)
bCinput)

Or overlayi

1,%3w overlayl
\c\b(test)
1s\c\blargs)m(Cinput)
b(input)

Or overtay?

1,%w overlay?
Vc\b(test)
1s\c\blargs)m(input)
b(input)

Or overlay3

1,8w overlay3
\c\b(Cargs)+1,%d
1,8/ .%x%//

Or overtltayé

13w overlayé
Vc\b(4col)

\f

b(test)

$a

b(file)

1s/° (/1 {/

q

\f

b(args)

1s/\c¢

GEOINDEX

APPENDIX C 75

/1

b0

ecr overlay(1
b(file)

r geofmt,runout
Pa{\f

b0

\b(4col)

2 3 4)

SUBROUTINE NAME: GEOFMT3.QEDX

Authors: Kevin W. Laurent, Larry C. Harms, and Pearl
Porter

Purpose of the program: geofmt3.qedx formats
geofmt.runout into four files acceptable for use by the
OVERLAY command to create a columnized output
segment.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: qx geofmt3 &1

Arguments: &1—Passed from the exec__com, geofmt.-
ec, and contains the page length (84 or 140)

Subroutines called: None

Common data referenced: None

Input files: geofmt.runout

Output files: overlay1, overlay2, overlay3, overlay4

b(loop)

%a

\c\b(test)
1,\Vc\b(argsd)m(input)
b(input)

Or overlay?

13w overlay?
\c\b(test)
1,\c\b(args)m(input)
b(input)

Or overlay2

1,3w overlay?
\c\b(test)
1s\c\blargs)m(input)
b(input)

Or overlay3

123w overlay3
\c\b(test)
1,\c\ovlargs)m(input)
b(input)

Or overlayé

1,3w overlayé
\c\b(loop)

\f

Arrays used: None

Called by: Executed by geofmt.ec

Error checking and reporting: Located in geofmt.ec

Constants: None

Program logic:

1. The initialization routine creates four segments:
overlay1 to overlay4. A segment, geofmt.runout,
is read into buffer, file, and a special character {, a
brace, which is made by depressing the shift key
and left bracket key simultaneously, is appended as
an EOF indicator.

2. The loop macro moves a predetermined number of
lines (page length argument used in geofmt.ec)
first to overlay1, overlay2, and so forth, until the
end of file indicator is read.

3. Write the four output segments.

4. Quit the text editor.

76

b(test)

$a

b(file)
1s/°{/{/

q

\f

bCargs)

1s/\c¢

/7

b0

ecr overlay(1 2 3 4)
b(file)

r jeofmt.runout
$al{\f

b0

\b(loop)

GEOINDEX

SUBROUTINE NAME: GEOFMTA.QEDX

Authors: Kevin Laurent and Pearl Porter

Purpose of the program: geofmta.qedx, an edit routine,
creates a RUNOFF segment using the file geofmt.-
data, which was created during the execution of
geofmt.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: qx geofmta &1 &2

Arguments:

&1 -1t contains the page length (usually 84 or 140) and
was passed from geofmt.ec.

&2-1t contains the number of lines needed at the
bottom of the page to type a complete reference and
was passed from geofmt.ec.

Subroutines called: None

Common data referenced: None

Input files: geofmt.data

Output files: geofmt.runoft

Arrays used: None

Called by: geofmt.ec

Error checking and reporting: Located in geofmt.ec
Constants: None

Program logic:

1. This gedx routine is executed if the third argument

b(main)
$a
b(file)
Tm(input)
b0

$a

~un 11

.Ne \c\b(need)

© o

of geofmt.ec is nbipp. It is very similar to
geofmt.qedx, except the .UN and .IN commands
for RUNOFF were increased to allow for
proportional-space printing. The line length was in-
creased from 30 to 42.

The two arguments used when executing geofmt.ec
are read into a buffer called args, and the first
argument (which is the page length) is moved to a
buffer called /ines. The second argument (number
of lines needed at the bottom of the page for prin-
ting a complete reference) is moved to a buffer call-
ed need. These two arguments are used with .PL
and .NE respectively as RUNOFF commands.

The initialization routine puts RUNOFF commands
into buffer 0.

Segment geofmt.data is read into a buffer called
file.

A special character {, a brace, which is made by
depressing the shift key and left bracket key
simultaneously, is appended to the end of
geofmt.data as an end-of-file indicator.

The RUNOFF commands, and one line of data at a
time is moved a from buffer file to buffer 0.

Step 6 is repeated until the special end-of-file in-
dicator is detected, at which time it is deleted.

Write geofmt.runoff.

Exit from text editor.

APPENDIX C 7

Vc\b(input)
\c\f

s/{/7{/

d

w geofmt.runoff

q

\f

b(loop)

$a
\c\b(main)
Vc\b(loop)
\f

b(args)
Tm(lines)
im(need)
b(lines)
1s/\c

//

b(need)
1s/\c

//

b0

$a

Pl \b(lines)
LU 42

.ma {

.Na

.in 11

\f

b(file)

r geofmt.data
sa{\f

b0
\b{(loop)

SUBROUTINE NAME: EMBED_TABS

Awuthor: Kevin Laurent

Purpose of the program: embed__tabs, a PL/1 program,
embeds tab commands between the columns of the file
geofmt.columns to produce a columnar proportional
spaced printout.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: embed__tabs &1

Arguments: &1 -1t contains the page length (usually 84
or 140) and is passed from geofmt.ec.

Subroutines called: None

Common data referenced: None

Input files: overlay1, overlay2, overlay3, overlay4

Output files: geofmt.columns

Arrays used: None

Called by: None

Error checking and reporting: If an error occurs the

error code is passed to the command processor, and a
Multics system message is printed.

Constants: None

Program logic:

1. The program asks for the number of columns and the
column width.

2. Tab positions are calculated depending on the column
width given by the user.

3. The program writes a SET command to geofmt.col-
umns to be used by the NBI. Left margin is set to
1; top margin is set to 0; a code, J-7, is passed that
specifies proportional spaced printing; line length
is set to 132; page length and text length are set ac-
cording to the first argument given when ex-
ecuting geofmt.ec.

4. The four overlay segments are concatenated and
written to geofmt.columns.

5. If an entire line is blank, only the first tab will be
written, in order to act as a line feed.

6. Files are closed and detached.

78 GEOINDEX
embed_tabs: et: proc (page_len); /* embed
\ctab commands in nbi proportional spaced printer stream */

/* Written by KLaurent,USGS,CCD,BSAP 6/27/78 */

/* The embed_tabs program accepts input from the overlay files and ad
\cds
the embedded commands between line segments to tab the columns. */

dcl page_len char (%*); /* page 1
\cength parameter */
dcl 1ioa_S$ioa_switch entry options (variable); /* for wr

\citing our concatenated lines to geofmt.columns */

dcl iox_S$attach_name entry (char (*), ptr, char (*), ptr, fixed bin
\c(35)); /* for all attachments */

dcl iox_S$open entry (ptr, fixed bin, bit (1) aligned, fixed bin (35)
\e)s

dcl iox_$get_line entry (ptr, ptr, fixed bin (21), fixed bin (21), f
\cixed bin (35));

dcl 1iox_Sclose entry (ptr, fixed bin (35));

dcl 1iox_$detach_iocb entry (ptr, fixed bin (35));

dcl com_err_ entry options (variable); /* com_er
\cr_ will interpret all the errors and print a standard message */
dcl error_table_S$end_of_info external fixed bin (35); /* use fo
\cr end of file check */

dcl command_query_ entry options (variable); /* use to
\c ask for ncols and col_width */

dcl continue_to_signal_ entry (fixed bin (35)); /* use to

\c pass along the error code to the command processor */

dcl 1 query_info, /* for pa
\cssing info to command_query_ */
2 vers fixed bin init (2), /* versio

\cn of structure */
2 yes_or_no_sw bit (1) unal init ("0"b),
2 suppress_name bit (1) unal init ("0"b),

2 status_code fixed bin (35) init (0), /* not us
\ced here */

2 query_code fixed bin (35) init (0); /* not us
\ced here */
dcl answer char (256) var; /* answer
\c returned from command_query_ */
dcl query_info_ptr pointer; /* used £
\cor command_query_ */
dcl (ncols, col_width) fixed bin; /* number

\c of columns; column width */
/* Retrieve number of columns and column width */

query_info_ptr = addr (query_info);

call command_query_ (query_info_ptr, answer, "embed_tabs",
\c"Enter number of columns:");

ncols = answer; /* conver
\ct to internal format */

APPENDIX C

call command quer (query info ptr, answer, "embed tabs",
y
\c"Enter column width:"); - - - -

col_width = answer;

begin;
dcl 1line (ncols) char (256) var 3 /* array
\cfor line segments to be concatenated */
del 1line_str_var char (256) var init (""); /* varyin
\cg length string */
del 1line_str char (79) init (""); /* concat
\cenated string */
del 1line_buff char (50) init (" "); /* buffer

\c for input */

del chars fixed bin (21) init (0);

dcl (sub, temp) pic"999";

del stmt_no pic"9999"; /* statem
\cent number */

del 1 fixed bin;

dcl code fixed bin (35); /* standa
\crd error code */

dcl (ov_ptr (4), tabout_ptr) pointer; /* pointe
\crs to 1o control blocks */

dcl buff ptr pointer; /* pointe

\cr to input buffer */

dcl 1 tab_format_array,
2 tab (ncols+l) char (9) var;

/* Initialization */

buff_ptr = addr (line buff); /* store
\caddress of input buffer in buffer pointer */

line (*) = ""; /* initia
\clize lines to blanks */

do sub =1 to ncols+l; /* calcul

\cate tab positions */
temp = (sub-1)* (col_width-9)+1;
tab (sub) = "#(ta," || temp || ")";
end;
call iox_S$attach_name ("ovl", ov_ptr (1), "vfile_ over
\clayl”, null (), code);
call iox_S$attach_name ("ov2", ov_ptr (2), "vfile_ over
\clay2", null (), code);
call iox_S$attach_name ("ov3", ov_ptr (3), "vfile_ over
\clay3", null (), code);
call iox_S$attach_name ("ov4"™, ov_ptr (4), "vfile_ over
\elay4", null (), code);
call iox_S$attach_name ("tabout", tabout_ptr, "vfile_ g
\ceofmt.columns”, null (), code);

do i = 1 to ncols;
call iox_$open (ov_ptr (i), 1, "O0"b, code); /* op
\cen overlay segs */
end;

80 GEOINDEX

call iox_S$open (tabout_ptr, 2, "0"b, code);
call ioa_$ioa_switch (tabout_ptr, "F 0001 #(se ml,tO0,]
\¢c-1,1132,p"a,x"a)", page_len, page_len, code); /* set margins & prop
\c print */
do stmt_no = 2 to 9999; /* do unt
\cil endfile */
do i = 1 to ncols;
call iox_$get_line (ov_ptr (i), buff_ptr, 50
\¢, chars, code);
if ((code = error_table_S$end_of_info) & (i =
\c 1)) then goto endup;
line (i) = substr (line_buff, 1, max (chars-
\el, 0)); /* move input line to hold area */

end;
if ((line (1) = "") & (line (2) = "") & (line (3)
\e = ") & (line (4) = ""))
then do;
line_str _var = "F " || stmt_no []| " " || tab
\e (1)
line_str = line_str_var; /* move v

\carying length string to non-varying string */
call ioa_$ioa_switch (tabout_ptr, line_str,
\ccode);

end;
else do;
do i = 1 to ncols;
if 1 =1
then line_str_var = "F " || stmt_no ||
\e" " || tab (i) || line (i) || "#(EX)";
else if 1 = ncols
then line_str_var = "F " || stmt_no ||
\e"+" |] tab (i) || line (i);
else line_str_var = "F " || stmt_no ||
\e"+" [] tab (1) || line (i) || "#(EX)";
line_str = line_str_var; /* move v

\carying length string to non_varying string */
call ioa_S$ioa_switch (tabout_ptr, line_
\estr, code);

end;

end;

end;
endup:

do i = 1 to ncols;

call iox_$close (ov_ptr (i), code);

call iox_Sdetach_iocb (ov_ptr (i), code);
end;

call iox_Sclose (tabout_ptr, code);
call iox_S$detach_iocb (tabout_ptr, code);
end; /* end be
\cgin block */

end embed_tabs;

APPENDIX C 81

SUBROUTINE NAME: TO-NBIPP

Awuthor: NBI personnel. Modified for use with geofmt
programs by Pearl Porter.

Purpose of the program: to-nbiPP allows the user to
record segments from Multics on the NBI diskette
when using the NBI System II as a terminal.

Data, base: Geoindex
Comgputer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: to-nbiPP
Arguments: None

Subroutines called: None
Common data referenced: None
Input files: geofmt.columns
Output files: None

Arrays used: None

Called by: None

Error checking and reporting: Provisions exist for
checking and reporting erroneous names and aborting
program.

Constants: None

to-nbiPP.fortran

(10/4/77)

00600

LINES
dimension line(79)
character file_name*32
double precision ec
equivalence(istat,ec)
c REQUEST AND ACCESS DESIRED

(¢]

13 print
readl7, file _name

17 format (v)
if(file_name.eq."q") go to 5

name = to-nibPP:SPECIAL TO SEND IN DISKETTE FORMAT

"FILE" TO BE SENT.
FOR ERRONEOUS NAMES AND ABORTING PROGRAM).
,"Multics file name to be sent (or q to quit):

Program logic:
1. The user is prompted with the message:
MULTICS FILE NAME TO BE SENT (OR Q
TO QUIT):
The user types the file name, which can be a
maximum of 32 characters.

At the end of transmission, the user types: q.

If file_name = q, go to 13.

. Attach and open file10.

If istat (which is the error code) is not equal to 0, go
to 1.

5. Read a line from the Multics segment into a format
(79al).

At end, go to step 10.

Write the line using a format (1h,79a1)

Call ioa_$nal(*?”). This prints a ? on the screen.

Read this character into iack.

If jack = 11, go to 5. Otherwise, go to 6. The above
loop, steps 5 through 9, sends each line and inputs
each ACK.

10. The next loop holds computer in program so it does
not receive ACKs while it is in ready, and NBI still
receives.

11. Read a value into end, using format (al).

12. If value of end is not equal to g, go to 11.

13. Close and detach file10 and stop the program.

Ll

© XN

NBI-MULTICS HANDSHAKE PROGRAM FOR RECEIVING TO NBI‘S DISK.

- AUTOMATIC

(PROVISIONS EXIST

call io ("attach","filelO","vfile_",file_name)

call 1o ("open","filelO","si")
if(istat.ne.0) go to 13

call ioa_$nnl ("?7")

read(5,20) iack

c LOOP IN PROGRAM WHICH SENDS EACH LINE AND INPUTS EACH ACK

(OR NAK).
read (10,10,end=3) line
0 format (79al)

— -

82

2 write(6,11) line
11 format(lh,79al)
call ioa_$nnl ("?2")
read (5,20) iack
format (i2)
if(iack.eq.11) go to 1
go to 2
EXIT PROGRAM:
RECEIVE
THEN IT CLOSES FILES.
read(5,30) end
0 format (al)
if (end.ne."q") go to 3
call io ("close","filelO")
call io ("detach","filelO")
stop
end

20

wWwn on

w

GEOINDEX

INPUT LOOP HOLDS COMPUTER IN PROGRAM SO IT DOES NOT
"ACKS" WHILE IT IS IN READY AND NBI STILL RECEIVES.

PROGRAM NAME: TO-NBID

Awuthor: to-nbiD was written by NBI personnel in Oc-
tober 1977. It is written in Fortran and is compiled on
the Honeywell Series 60 computer.

Purpose of the program: to-nbiD allows the user to
record segments from Multics on the NBI diskette
when using the NBI System II as a terminal.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)
Operating system: Multics

Calling sequence: to-nbiD

Arguments: None

Subroutines called: None

Common data referenced: None

Input files: Name of file to be transferred
Output files: Name of file transferred
Arrays used: None

Called by: None

Error checking and reporting: Provisions exist for
detecting erroneous name and halting program.

Constants: None

to-nbiD.fortran

(10/4/77)
name =
LINES
dimension 1line(133)

N0 nN0onon

Program logic:

1.

& W

o

© 0 ®

10.

11.
12.
13.

The user is prompted with the message:
MULTICS FILE NAME TO BE SENT (OR Q
TO QUIT):

The user types the file name, which can be as
many as 32 characters long.

At the end of transmission, the user types: q.

If file_name = q, go to 13.

Attach and open file10.

If istat (which is the error code) is not equal to 0, go
to 1.

Read a line from the Multics segment into a format
(133al). At end go to step 10.

Write the line using a format (1h,133a1)

Call ioa_$nal(“?”). This prints a ? on the screen.

Read this character into jack.

If iack = 11 go to 5.

Otherwise, go to 6. The above loop, steps 5 through
9, sends each line and inputs each ACK.

The next loop holds computer in program so it does
not receive ACKs while it is in ready and NBI still
receives.

Read end using format (al).

If end is not equal to g, go to 11.

Close and detach file10 and stop the program.

NBI-MULTICS HANDSHAKE PROGRAM FOR RECEIVING TO NBI‘S DISK.

to-nbiD:SPECIAL TO SEND IN DISKETTE FORMAT - AUTOMATIC

APPENDIX C

character file_name*32
double precision ec
equivalence(istat,ec)

c REQUEST AND ACCESS DESIRED

0

print
readl7, file_name

format (v)
if(file_name.eq."q") go to 5

17

"FILE" TO BE SENT.
FOR ERRONEOUS NAMES AND ABORTING PROGRAM).
,"Multics file name to be sent (or q to quit):

83

(PROVISIONS EXIST

call io ("attach","filelO","vfile ",file_name)

call io ("open","filelO","si")
if(istat.ne.0) go to 13

call ioa_$nnl ("?7")

read(5,20) iack

c LOOP IN PROGRAM WHICH SENDS EACH LINE AND INPUTS EACH ACK

c (OR NAK).
1 read (10,10,end=3) line
10 format(133al)
2 write(6,11) line
11 format(lh,133al)
call ioa_$nnl ("?2")
read (5,20) iack
format (i2)
if (iack.eq.11) go to 1
go to 2
EXIT PROGRAM:
RECEIVE
THEN IT CLOSES FILES.
read(5,30) end
0 format(al)
if (end.ne."q")

20

Wwnonoon

go to 3

5 call io ("close","filelO")
call io ("detach","filelO")
stop
end

INPUT LOOP HOLDS COMPUTER IN PROGRAM SO IT DOES NOT
"ACKS" WHILE IT IS IN READY AND NBI STILL RECEIVES.

PROGRAM NAME: CONCAT

Author: Harold Johnson

Purpose of the program: concat prepares reference files
for input to the GRASP system. Each set of records
from one reference are concatenated in the format
assigned by matrix into one long vector.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: concat

Arguments: None

Subroutines called: ftnumber, main_concat

Common data referenced: None

Input files:
matrix used onunit 22 (file22)
refNM used on unit 30 (fi/le30)

Output files:
temp77 used on unit 77 (file77)
strgNM used on unit 40 (file40)

Arrays used: None

Called by: None

Error checking and reporting: None

Constants: None

Program logic:

1. file22 is attached to matrix, file77 is attached to
a temporary file named temp77, and the user is
asked for the State id number for the reference file
being processed. file30 is attached to this State’s
reference file, and file40 is attached to a new out-
put file named strgNM, where NM is the State
FIPS code.

2. main_concat is called where the main work is pro-
cessed.

3. All files are closed.

84 GEOINDEX

C % %k K ok k ok Kk CONCAT * ok ok ok ok ok R
character*3?2 filename
character*l iblank
characterx4 file, mode
character*?2 state
character*6 outfile
dimension iout(1211),ifirst(46)sichar(46),item(46,10)sia8te(5)
data iblank/" "/
UPDATED AS OF DEC 27, 1976 He JOHNSON
Converted to Multics February 21, 1977 H Johnson
Modified to allow item 87 to indicate extra records, March 3, 1977
H Johnson,
WARNING: ANY CHANGE IN nrec MUST BE MADE BY HAND IN THE modify

THE PURPOSE OF THIS PROGRAM IS TO PREPARE REFERENCE FILES

FOR INPUT TO THE '"CREAT" PROGRAM OF "IRIS", A REFERENCE FILE
IS READ FOR EACH IF, ISF, AND A LONG VECTOR RECORD IS CREATED
WITH REFERENCE ENTRIES LOCATED IN PRE-ASSIGNED POSITIONS

REQUIRED INPUT FILES:
30 = REFERENCE FILE = "refNM"
= MATRIX FILE DESCRIBING THE ASSIGNED LOCATIONS.
05 = INPUT TO TELL REFERENCE FILE NAME AND NUMBER OF LINES OF

EXPLANATORY DATA TO BE SKIPPED .

|

|

1

|

|

|

|

|

i

I 22
|

|

|

1 REQUIRED OUTPUT FILES:

| = WORK FILE

i = "strgNM" IS THE MAIN QUTPUT FILE.
|

|

i

. - P - A B - - W P D WD M WS W WD D - - -

THIS PROGRAM CONCATENATES THE DIFFERENT "IF" FILES
FROM THE REF AND REFU FILES INTO LONG FILES FOR INPUT
TO THE CREATE PROGRAM OF GRASP.

MAIN PROGRAM

O OO0 000000 0000000000000 0000000nO0O0oO0

call o ("attach","file22","vfile_","matrix","-append","~ssf")

call 10 ("open","filel2","si")

call 10 ("attach","file?7","vfile_ ", "temp?77")

catl 10 ("open","file?7","si0")

write(6,890)
890 format(" ENTER THE 2-DIGIT CODE FOR THE STATE BEING PROCESSED™)
read(5,391) state
891 format(a?2)
encode(outfile,893)statesriblank
8935 format("ref",alsal)
mode = "si"
call ftnumber (30s,0utfilermode)

— e e G —— e G CEN R gmm G T S e - G G-

APPENDIX C 85

encode(outfile,895)state
895 format("strg",ald)
mode = "so"
call ftnumber(40,0utfilesrsmode)

c
¢ MATRIX IS THE INPUT MATRIX WAICH DESCRIBES WHERE THE INPUT
¢ RECORDS ARE TO 8E LOCATED AMONG THE POSITIONS IN THE OUTPUT
¢ FILE TEMPO1 WHICH IS SET UP FOR GRASP "CREATE"INPUT.
c
¢ IT IS ALSO REQUIRED TO EQUATE 30 TO THE INPUT REFU OR REF
¢ FILE.
¢ EQUATE 77 TO A TEMPORARY FILE USED ONLY IN THIS PROGRAM,
¢ THE OUPUT FILE IS CALLED TEMPO1
c
nrec=1211
iwide=10
1dim=46
¢ NREC IS THE LENGTH OF THE OUTPUT FILES IN TEMPO1, OR 40,
¢ IWIDE IS THE NUMBER OF POSSIBLE PLATES ON THE SAME OUTLINE.
¢ IDIM IS THE NUMBER OF DIFFERENT KINDS OF FILES IN REF OR REFU.
c
nskip = 0
call main_concat(nrecsidimsiwidesioutrifirstoichar,item,nskip)
¢ THIS READS THE REFU OR REF FILE AND SETS UP, FOR EACH "If"™
¢ A VECTOR IOUT CONTAINING DATA FROM THE REF FILE IN POSITIONS
c DESCRIBED BY THE MATRIX. IT THEN WRITES THESE VECTORS O0OUT
¢ TO FILE 40 WHOSE RECORD LENGTH IS NREC.
endfile 40
c
¢ THIS ROUTINE ADDS A BLANK RECORD TO THE END OF STRGnm
¢ THIS IS NECESSARY BECAUSE OF A PECULIARITY IN MULTICS.
c
call o ("close","file22™)
call o ("close”","filest0'")
call 10 ("close","tile30")
call io("detach","file22")
call 1o ("detach","files40")
call 10 ("detach","file30")
c
catl io0 ("close","file?7")
call io ("detach","file?7?7")
stop
c
end
SUBROUTINE NAME: MAIN_CONCAT wryte__concat to output these vectors to the strgNM
file. Each time it checks for repeated data using
Awuthor: Harold Johnson ndflg, the flag for ITEM 87.

Purpose of the program: main_concat calls con- | Data base: Geoindex
trl_concat, which sets up the control vectors and | Computer: Honeywell Series 60 (level 68)
matrices that determine positioning of data in output | Operating system: Multics
vectors. It repeatedly calls vector_concat to write | Calling sequence: call main_concat (nrec,idim,iwide,-
this information into long vectors in memory. It calls iout,ifirst,ichar,item)

86

Arguments:

nrec—The length of the output vectors

idim —The number of different kinds of items—that is,
the number of rows in matrix

iwide—The maximum number of different items
associated with a single row of matrix

iout—The output vector of length nrec

ifirst—The control vector of length idim whose kth en-
try is the starting position in jout of data associated
with the name in the kth row of matrix

ichar—The control vector of length idim whose kth
entry is the number of allowable characters for data
associated with the name of the kth row of matrix

item —The control matrix of dimension idim by 10 of

item numbers occurring in matrix

Subroutines called: contrl_concat, vector_concat,

wryte__concat, modify_.concat

Common data referenced: None

Imput files: None

Output files: None -
Arrays used: None

GEOINDEX

Called by: concat
Error checking and reporting: The user is informed:

YOU GOT TO MAIN

Number of records written to strgNM is counted, and
the user is informed every 25th record because, during
the long interactive running of this program, the user
may become anxious about loops and long CPU time.

Constants: None
Program logic:
1.

2.

3.
4. When an ITEM 87 is found, indicating repeated data,

Subroutine contrl_concat is called to set up the con-
trol matrices idim, ichar, and item.

Subroutine vector__concat is called to set up the out-
put vector for one reference.

wryte__concat is called to output that vector.

modify__concat is called to modify the previous
output vector according to the data that come after
ITEM 87.

The count of output vectors is incremented and a
message written each time the count equals a
multiple of 25.

subroutine main_concat(nrec,idim,iwide,iout,ifirst,ichar,

\citem,

&

[
(o
c

9100

Cc

[2o 2 o I o I ¢ N o BN o]

c
1

[¢]

0000000

nskip)

subroutine used in main program "concat"

updated as of dec. 27, 1976 h.
converted to multics february 27,

johnson
1977 h johnson

dimension iout(nrec),ifirst(idim),ichar(idim),ifile(60)

dimension item(idim,10)
write(6,9100)

format (" you got to main")

call contrl_concat(idim,ifirst,ichar,item)
this sets up the control matrix to run this subroutine.
item(line,kolumn) is the item number in refu.
ifirst(line) is the starting position in the output file

for the itemn.

ichar(line) is the number of positions for item(line,kolumn)

in the outfile.

kount=1

call vector_concat(nrec,idim,iout,ndflg,iwide,ichar,ifirst,item,kf
\clg)

this reads through one "if" file in refu.
it sets up a vector iout(nrec) which is to be the
it writes the other cards

1 into a file 77 which will

in kolumn=1,
first output for this "if".
having item with kolumn .gt.

be read repeatedly to produce new vectors iout.
the number of cards written to 77.

file 30 is reached.

for those items

kflg =

ndflag = 1] when end of

APPENDIX C

87

call wryte_concat(iout,nrec,item,idim,iwide,kflg,

ichar,ifirst)

file, 40.
=2 to change iout,
to kolumn=2,3,...

0nN0on0onnNe

if(ndflg .ne. -1) go to §

this writes the 1out received from vector to the output
it then reads through file 77 using the kolumn
writes this new iout vector,

then goes

call modify_concat(iout,nrec,item,idim,iwide,kflg,ichar,ifirst,ndfl

\cg)

this routine reads throught records which follow item = 87 until

the next item =

87 is encountered.

it modifies iout only in

those records which it finds in file 30 between these two items 87

it senses a new "if".

continue
kount=kount+l
1if(25*(kount/25) .lt.
write(6,9110)kount

9110

10 if(ndflg .eq. l)return
go to 1

c
end

c
c
c
c
¢ and then writes the resulting vector and proceeds to modify until
c
c
c
5

kount) go to 10

format (" you wrote the ",i5,"th vector to the strg file")

SUBROUTINE NAME: ALTER_CONCAT

Author: Harold Johnson

Purpose of the program: alter_concat modifies the out-
put vector when more than one item occurs associated
with the same name classification. Those data have
been written to file77, and alter_concat processes
them.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call alter__concat (iout,nrec,item,idim,-
kolumn, mstop,ichar,ifirst)

Arguments:
iout, nrec, item, idim, ichar, ifirst—See main_con-

cat.
kolumn—An assigned column of item, which is to
determine what data will be used to modify iout

Subroutines called: locate__concat

Common data referenced: None

Input files: None

Output files: None

Arrays used: iout(nrec), ichar(idim), ifirs¥idim),
ifile(60)

Called by: wryte__concat

Error checking and reporting: None

Constants: None

Program logic:

1. mstop is set to 0.

2. file77 is read, and id is compared with those in col-

umn number kolumn in item.

If a match is found, mstop is set to 1, iout is modified
according to the data in this record of file77, and
the reading is repeated.

3. If no match is found, the next record in file77 is read.

C *xwkkix SUBROUTINE ALTER_CONCAT *Axhikkx
subroutine alter_concat(ioutsenrecsitemosidimskolumn,mstop,

ichars,ifirst)

¢ SUBROUTINE USED IN MAIN PROGRAM "CONCAT"

¢ UPDATED AS OF DEC. 27, 1976 He
¢ Converted to Multics FEBRUARY 18,

JOHNSON

1977 H. Johnson

88 GEOINDEX

c
dimension iout(nrec),item(idim,10),ifile(6U),1ff(3)
dimension ichar(idim),ifirst(idim)
mstop = U

1 read(77,900,enad=100) istate,(iff(j),j=1,3),itm,

(ifile(k),k=1,60)

900 format(i2,3a1,i2,60a1)

c
call locate_concat(itmsidimsitemslinerskolumn)
if(line .gt. 0) go to 10
go to 1

c

10 mstop=1
no=ichar(line)
do 20 j=1.,no0
iout(ifirst(line)+j-1)=ifile(j)

20 continue
go to 1

c

100 rewind 77

return
end

C *kukkwk END ALTER_CONCAT Axkhrnwn

SUBROUTINE NAME: LOCATE_CONCAT

Awuthor: Harold Johnson

Purpose of the program: locate_concat searches the
rows of item under an assigned column to match a
given item number.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call locate_concat (itm,idim,item,-
line,kolumn)

Arguments:
idim, item —See main_concat.
itm— A given item number that is to be found in item
kolumn-A given column number whose column in

item is to be searched

C **xkxkxk SUBROUTINE LOCATE_CONCAT

line —The line number in item where itm is found in
the kolumnth column
Subroutines called: None
Common data referenced: None
Input files: None
Output files: None
Arrays used: item (idim,10)
Called by: vector_concat, alter_concat, modify_-
concat
Error checking and reporting: None
Constants: None
Program logic:
1. line is set at 0.
2. The column number kolumn in array item is searched
for a match with itm.
3. If found, that column is equated to line.

ok Kk kok kok

subroutine locate_concat(itmsidimsitemslinerkolumn)

UPDATED AS OF DeEC. 27, 1976 He
converted to Multics February 21,

O o000

dimension item(idim,10)
line=0
do 16

ifCitm

j=1,iqim
.eQ-

SUBROUTINE USED IN MAIN PROGRAM "CONCAT"
JOHNSON
1977 H.

Johnson

item(jo,kolumn)) go to 20

APPENDIX C

10 continue
return

20 line=j
return
end

C **xkxxx END LOCATE_CONCAT *waaans

89

SUBROUTINE NAME: MODIFY__CONCAT

Author: Harold Johnson

Purpose of the program: modify__concat reads through
the records in a reference file that lie between two suc-
cessive ITEM 87s or between 87 and the next
reference number and then modifies the previous iout
vector according to those intermediate records.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call modify__concat (iout,nrec,item,-
idim,iwide,kflg,ichar,ifirst,ndflg)

Argquments:
iout, nrec, item, idim, iwide, ichar, ifirst—See

main__concat.

kflg, ndflg, iout— See vector__concat.

Subroutines called: wryte__concat, locate__concat

Common data referenced: None

C **xkwxkx SUBROUTINE MODIFY_CONCAT

Input files: None
Output files: None
Arrays used: newout(1211), ifirst(idim), iout(nrec)
Called by: main__concat
Error checking and reporting: None
Constants: None
Program logic:
1. A vector newout is made identical to the input vector
iout.
2. A record from the reference file is read.
If this represents a new reference file as indicated by
a new Jif number, the input reference file is
backspaced, the newout vector is written, and pro-
gram control returns.
If the record is a new ITEM 87, newout is written
and step 1 is repeated.
If the record is neither of these, the record data is
entered into newout, and the next record is read
and step 2 is repeated.

Ahkhkkhkkk

subroutine modify_concat(ioutsnrecritemsidimesiwiderkflgerichar,
ifirst,naflg)

in the new version of concat., updated to allow

item = 87 until
iout only in those records
It then writes the resulting

"if" it returns.

iout (nrecl)esifirst(idim)srichar(idim),ifile(60)

c
C Subroutine used
¢ extra i1tems flagged by item no. 37.
¢ 4 Johnsons Marcn 3, 1977.
c
c This subroutine read through records which follow
¢ the next item 87 is noted. It modifies
¢ which it finds between items 87,
¢ vector and continues., If it senses a new
c
dimension
dimension item(idim,10),newout(1211)
c
ndflg = 0
¢ first, make newout the same as i1out.

5 do 7)=lsnrec
newout(j) = dout(j)

7 continue

C

the original vector..

10 read(30,910,end=1001)istater(newout(j),j=2+,4),itms(ifile(k),k=1,60)

910 format(i2,3al1,12,060Ual1)

90 GEOINDEX

c
¢ check to see if a new "if" has been encountered, if it has, backspace
¢ and return,
c
do 20)=2,4

if(newout(j) .ne. iout(j)) go to 1000
20 continue
c
¢ Check to see if a new item 87 has been encountered. If it has,
¢ write the newout vector and repeat the process.

c
if(itm .ne. 87) go to 100
kflg = 0
call wryte_concat(newoutsnrecoritemsidimsiwiderkflgsricharsifirst)
go to 5
c

100 continue
¢ Now locate the Line in matrix which this last-read item occurs in,
c
do 110 kolumn = 1,10
call locate_concat(itmsidimsitemslineskolumn)
if{line .ne. 0) go to 120
110 continue
c
120 continue
¢ Modify newout according to ifile in the positions indicated by
¢ ichar(line) and ifirst(line).
c
no = icnar(line)
dJo 130 3 = 1.,n0
130 newout(ifirst(line) + j - 1) = ifile(j)
c
Jo to 14
c
1000 backspace 3U
do 1020 j = 2,6
1020 newout(j) = jout())
call wryte_concat{(newoutsnrecritemsidimosiwiderskflgricharsifirst)
return
c
1001 naflg=1
return
end
C *xxkkkx END MODIFY_CONCAT Axhhkax

SUBROUTINE NAME: VECTOR_CONCAT Operating system: Multics
Author: Harold Johnson Calling sequence: call vector_concat (nrec,idim,iout,-

Purpose of the program.: vector_concat sets up the out- ndflg,iwide,ichar,ifirst,item, kflg)

put vector for one reference file. When ITEM 87 is | Arguments: . . » .
found, it writes the remaining records for the nrec, idim, iout, iwide, ichar, ifirst, item—See

reference to a temporary holding file77. main_concat.
Data base: Geoindex ndflag—Indicates by 1 that the end of the input
Computer: Honeywell Series 60 (level 68) reference has been reached

APPENDIX C

kflg—The number of records from the reference file
that vector__concat temporarily stored in file77

Subroutines called: locate__concat

Common data referenced: None

Input files: refNM

Output files: None

Arrays wused: iout(nrec), ifile(60), ichar(idim),
ifirst(idim)

Called by: main__concat

Error checking and reporting: None

Constants: None

Program logic:

1. The output vector iout is first blanked out.

2. The first reference record for the current reference

kkkaktk SUBROUTINE VECTOR_CONCAT =«

91

file is read to set up the reference id and the State
FIPS code in jout.

3. The rest of the records are read and the row and col-
umn of the matrix file is determined where the cor-
responding item is located. This is done by calling
locate__concat.

4. Data in each record is inserted into iout using the
information determined in 3.

5. When ITEM 87 has been read, control is returned to
main_concat.

6. Whenever items are found that occur in columns of
item other than the first, those records are written
to a temporary holding file77. wryte__concat pro-
cesses file77 to update iout.

* %k Kk ok Kk

subroutine vector_concat{(nrecridimsioutsndflayriwidesichar,

ifirstrsitemskflg)
SUBROUTINE USED IN MAIN PROGRAM
UPDATED AS OF DEC. 27, 1976 H,
Converted to Multics February 21,

O 000

dimension
dimension item(idim,10),if
data iblank/"”
ndflag=0
kflg=U

'l/

FIRST,

(g}

MAKE IOUT ALL BLANK
do 10 j=lsnrec
iout(j))=iblank
continue

<

READ THE FIRST RECORD TO SET UP THE
AND THE STATE IN IOUT

O 00 0O -

read(30,900,end=1001)1istat
(ifile(k),k=1,60)
format(i2,3a1,i2,60a1)

do 20 j3;=1.,20
iout(4+jd)=itile(j)
continue

900

20
c

30 read(30,90U0,end=1001)1istat

k=1,60)
¢ CHECK TO SEE IF THIS IS A NEwW IF’;

c

I

do 35 j=1,3
if(iff(3) .ne.
continue

jout (1+3))
35
c

if(itm .ne. 87)

ndflag=-1

go to 37

“"CONCAT"
JOHNSON

1977 H Johnson,

iouti{nrec),ifile(60),ifirst(idim),ichar(idim)

f(3)

"ID" NUMBER

es(iout())esrj=2s4)ritm,

es(iff(j)oj=1,3)ritms(ifile(k),

N WHICH CASE, STOP.

go to 1040

92 GEOINDEX

1f(kflg .gt. Odrewind 77
return
37 continue
c
when itm = 87 is encountered, it

indicates that the last output

vector is to be modified by the next records which follow
until the next item = 87 is encountered. Any further records
with the same "if" will modify the last output vector obtained from

NOW LOCATE THE LINE AND KOLUMN IN WHICH ITM OCCURS.
IF IT OCCURS IN KOLUMN 1, WRITE TO IOUT;, OTHERWISE WRITE

c
¢
c
c
¢ the original file.
c
c
¢ TO FILE 77.

¢

koltumn=1

call locate_concat(itmsidimesitemslineskolumn)

o 0o o0

if(line .eq. 0) go to 50
no=ichar(line)
do 40 j=1,n0

WHEN LINE = 0+, NO MATCH HAS BEEN FOUND IN KOLUMN 1.
IT IS NECESSARY TO CHECK THE OTHER COLUMNS.

iout(ifirst(line)+j=-1)=ifile())

40 continue
go to 30

50 kflg=kflg+1

write(77,900)istate,(iff(jlsj=1,3)sitms(ifile(k)rk=1,60)

go to 30

1000 backspace 3U
if(kflg .gt. Udrewind 77
return

10u1 ndflay=1
if(kfly .gt. O)rewind 77
return
end

C *xkxxxx END VECTOR_CONCAT *xrnnax

SUBROUTINE NAME: WRYTE__CONCAT

Author: Harold Johnson

Purpose of the program: wryte_concat is used to write
the vector jout to the output file strgNM. It also
modifies /out when multiple item numbers occur that
have been written to file77.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call wryte_concat (iout,nrec,item,-
idim,iwide, kflg,ichar,ifirst)

Arguments:

iout, nrec, item, idim, iwide, ichar, ifirst—See

main_concat.

kflg —See vector__concat.
Subroutines called: alter_concat
Common data referenced: None
Input files: None
Output files: None
Arrays used: iout(nrec), leftov(80)
Called by: main_concat, modify__concat
Error checking and reporting: None
Constants: None

APPENDIX C 93

Program logic:

1. An 80-character vector named /eftov is blanked out.

2. Each successive 80-character segment of jout is writ-
ten to strgNM until a segment of less than 80
characters remains.

3. This last segment, with blanks from /eftov added to
its right-hand side to make up 80 characters, is
written to strgNM.

4. If kflg indicates that data exists in file77 for this
reference, alter_concat is called to modify iout.
Then step 2 is repeated. ko/umn begins at 1 and is
incremented by 1 until no match is found by
alter_concat. In this way, repeated data are in-
troduced into iout one column at a time according
to matrix.

C *ku«kkwx SUBROUTINE WRYTE_CONCAT **xwkhkw
subroutine wryte_concat(ioutsnreceo,items,idim,iwidersktlyg,

icharsifirst)

UPDATED DEC. 27, 1970 He JUHNSON
converted to Multics February 18,

OO0 0O o0

SUBROUTINE USED IN MAIN PROGRAM "CONCAT"
WARNING: THERE IS A SUBROUTINE CALLED WRYTE IN THE PROGRAM "PUTA4L"

1977 H, Johnson

dimension i1out(nrec),item(i1dim,10),v(3)
dimension ichar{(idim),ifirst(idim),leftov(81)

data iblank/" "y
do 1000 3=1,80
leftov(jl)=iblank

1000 continue
kolumn=1
m=50

1 no=nrec/80
do 10 j=1,n0

write(40,900)Ciout(30*(j-1)+k),k=1,80)

900 format(80al)

10 continue
mo=(no+1)*30 - nrec
no=80*no+1

write(40,900)(iout(k)sk=nosnrecl,(leftov(jlsj=1,mo0)

if(kfly .eg. Odreturn

kotumn=kolumn+1

1f(kolumn .gt. iwidel)return

call alter_concat(ioutsnrecritemsidimskolumnsmstop,

ichares,ifirst)

¢ THIS RUNS THROUGH FILE 77 AND COMPARES ITM WITH ITEM
¢ (J,KOLUMN) »J=1,10IM, WHEN A MATCH IS FOUND, IOUT IS CHANGED.
MSTOP = 0 WHEN NO MATCH HAS BEEN FOUND,

if(mstop .eq. U) return

if(kolumn .eq. iwice)return

go to 1

end
C *xkkxkx END WRYTE_CONCAT *akkxkx

94 GEOINDEX

SUBROUTINE NAME: CONTRL_CONCAT Common data referenced: None
Input files: matrix used on unit 22 (file22)
Awuthor: Harold Johnson Output files: None

Purpose of the program: contri_concat sets up the con- | Arrays used: None
trol vectors ifirst and ichar and the matrix item that | Called by: main_concat

are used to process the records. Error checking and reporting: None
Data base: Geoindex Constants: None
Computer: Honeywell Series 60 (level 68) Program logic:
Operating system: Multics 1. By means of a do loop, the file matrix is read to deter-
Calling sequence: call contrl _concat (idim,ifirst,ichar,- mine for each row the locations of the first
item) character, the number of admissible characters,
Arguments: See main_concat. and the associated item numbers for each kind of
Subroutines called: None data.

C **kxkxdk SYBROUTINE CONTRL_CONCAT #kkhkk*
subroutine contrl_concat(idimsifirstsoicharsitem)
SUBROUTINE USED IN “AIN PROGRAM '"CONCAT"
UPDATED AS OF DEC. 27, 1976 He JOHNSON
Converted to Multics February 21, 1977 H Johnson

(e BN o I e B o

dimension itirst(idim)s,ichar(idim),item(idim,10)

do 10 j3=1,idim

read(22,900)asbrcrifirst(jl)richar(jl)s,not,

(item(),k)ok=1,10)
900 format(2ab,a2,15,19,19,1013)
10 continue

return

end
C *khkukhk END CONTRL_CONCAT #Axkwkx

FILE NAME: MATRIX itype—A code for the GRASP program to indicate
what type of data occurs in the record (1 means in-
teger; 2 means floating point number; 3 means dic-
tionary character; 6 means character string)

ifirst—The initial position in the records of strgNM
and redyNM files where this information is to be

Purpose of the file: matrix assigns to the item numbers
that occur in the reference files the following data:
acronyms, type numbers, intitial character positions,
maximum character lengths, and terminal character
positions in the strgNM and redyNM files that are

used as input to the GRASP routines. stored . ,
Format: Each record contains iacron, itype, ifirst, ichar—Maximum allowable length of this information
ichar, ifast, and from 1 to 10 items, located as follows: | i/ast—Last position in the records of strgNM and
a9 (left-justified), i1, i5, i9, i6, 83X, and from 1 to 10 as redyNM where this information is allowed
i3. item—From 1 to 10 item numbers that are associated
Arguments: with this acronym
iacron — An acronym associated with the items Referenced by: chkref, concat, GRASP
matrix
ID 1 1 4 4 1
STATE 3 5 20 24 2
AUTHOR1 6 25 60 84 3
AUTHOR2 6 85 60 144 4
AUTHOR3 6 145 60 204 5
YEAR 1 205 4 208 8

APPENDIX C 95
TITLE1 6 209 60 268 9
TITLE2 6 269 60 328 10
TITLE3 6 329 60 388 11
TITLE4 6 389 60 448 37
COUNTY1 6 449 60 508 12
COUNTY2 6 509 60 568 13
COUNTY3 6 569 60 628 14
PUBLISH 6 629 60 688 17
SERIES 6 689 60 748 23
SERIES2 6 749 60 808 60
EMPHASI 6 809 60 868 24
AREA 2 869 8 876 25
AUNTIT 6 877 7 883 26
NLAT 1 88&4 12 895 27
SLAT 1 896 12 907 28
WLONG 1 908 12 919 29
ELONG 1 920 12 931 30
CLAT 1 932 12 943 31
CLONG 1 944 12 955 32
OMAPS 6 956 60 1015 34
AVAIL 6 1016 60 1075 35
BASE 3 1076 30 1105 36
GEOLOGY 3 1106 12 1117 38
PLATE 6 1118 30 1147 39 40 41 42 43 66 67 68 69 70
IDSTAT 1 1148 2 1149 44
SCALE 1 1150 8 1157 18 19 20 21 22 61 62 63 64 65
IDSUB 1 1158 2 1159 45 46 47 48 49 71 72 73 74 75
IBOUND 1 1160 6 1165 50 51 52 53 54 76 77 78 79 80
ISPAN 1 1166 6 1171 55 56 57 58 59 81 82 83 84 85
ALSOMAP 6 1172 30 1201 86
DUMO 1 1202 1 1202 87
DUM1 1 1203 1 1203 88
DUM2 1 1204 1 1204 89
DUM3 1 1205 1 1205 90
DUM4 1 1206 1 1206 91
DUMS 1 1207 1 1207 92
DUM6 1 1208 1 1208 93
DUM7 1 1209 1 1209 94
DUMS8 1 1210 1 1210 95
DUM9 1 1211 1 1211 96

PROGRAM NAME: TAPEDWG

Awuthor: Richard Thoensen

Purpose of the program: tapedwg reads a group of card
images from a tape created on a 32 bit machine and
creates a System 101 drawing file. The header card is
followed by data cards that contain 6 points per card
in (12F6.3) format.

Data base: Geoindex

Computer: Data General Nova 1220

Operating system: System 101

Calling sequence: tapedwg

Arguments: None

Subroutines called: save, msgot, numin, yesno,
modlc, fckbk, rdtape, ckerd, hex8, rdhdr, asfic,
erase, rdcrd, rwcon, rewin, bell, ovrly, exit2, skip

Common data referenced: /bik/, /pntr/, Imenul/, /exec/,
/dskbf/, lident/, /tape/, /tpdw1/, /tpdw2/, /font/

Input files: Tape that contains mapNM

Output files: coorNMdw, bordNMdw, gridNMdw,
statNMdw, counNMdw

Arrays used: None

Called by: None

Error checking and reporting: A message will be printed
out if a data error or tape error occurs.

96

GEOINDEX

Constants: None
Program logic:

1.
2.

10.
11.
12.

OOO0OO0O0O0O0O0O0O0O0O0O00O00O00O00O00O00OO0

Initialize data fields.
Send message to terminal:
TAPEDWG OVERLAY
PAUSE MOUNT TAPE ON UNIT 0

. Send message to terminal:

CHARACTER HEIGHT =
and store the response in texth.

. Send message to terminal:

SYMBOL # =
Send message to terminal:
OF PENS=,1,2, or 3
and store response in ipen.

. Send message to terminal;

TEXT WANTED?? 1=yes, 0=no
and store in iftext

. Multiply the character height texth by 1.5 and store

in sfact.

Send message to terminal:

SKIP FILES?

Call yesno.

If yes, call skip.

Otherwise, go to next step.

Call rdtape to read the tape.

If jstat = 4, go to step 24.

If jstat not = 0, go to step 25.

Call hex8.

Call rhhdr.

Call asflc to find the number temp in ibuff(1).
isubf = temp + 0.5.

Write the value of isubf using (I6) format.

If isubf = 9999, then go to step 29.

If isubf is greater than 1000, then subtract 1000
from jsubf.

If isubf equals 1000, load isubf with 998.

TAPEDWG
10THOENSEN76

SOURCE=<TAPEDWG:F>

OBJECT=<TAPEDWG:R>

PURPOSE:

13.
14.

15.

16.

17.

18.
19.

20.
21.

22.

23.

24.

25.

26.

21.

28.

29.

Call erase to clear the screen.
Call asflc to find the number temp in ibuff(6), isf
=temp + 0.5.

If the error code jstat = 1, set isf = 1.

Call asfle to find number temp in ibuff(11).

If the error code is 1, then set not = 0; otherwise,
set not = temp + 0.5.

Call asflec to find the number temp in ibuff(16).

If the error code is 1, then set ispan = 0; otherwise,
set ispan = temp + 0.5.

If isfno is greater than 6, then set ie = 6; other-
wise, set je = isfno.

Call rdtape to read the tape.

Call ckerd.

If ibad = 1 (error code) go to 18.

Call hex8.

Call rdcrd to read the data card.

If kstat = 1 go to 26.

If iftext is not equal to 1, call rwcon to format sym-
bols only. iftext will be = 1 if text was wanted,
otherwise it will be a 0.

Call rweon to format the drawing file.

Continue steps 18 through 23 until jstat = 4.

Call msgot to print on the terminal:

END OF FILE REACHED?

Go to step 27.

Message:

TAPE ERROR # (NM and the error code.)

Go to step 27.

Message:

DATA ERROR
Call msgot to send message to the terminal:
REWIND TAPE?

Call yesno.

If ians = 1 call rewin to rewind the tape.

Call msgot to send message to the terminal:

PROGRAM FINISHED!!

TO READ A GROUP OF CARD IMAGES FROM A
TAPE CREATED ON A 32 BIT MACHINE

AND CREATE A SYST 101 DWG FILE.
HEADER CARD FOLLOWED BY DATA CARDS

W/ 6 PTS PER CARD 12F6.3 FORMAT

Coooo
Coooo

OOO0O0O0O0O0O0O0O00O00O00O00OO0n

o

OO0

APPENDIX C 97

REMARKS:
THIS PROGRAM HAS KNOWLEDGE OF FILE STRUCTURE.

WHEN RWCON READS A RECORD IT TRANSFERS
THE DATA TO COMMON /LINBF/ LTYPE,LWIDE
AND TO COMMON /SYMBF/ MIRSY,SKLSY

WHEN RWCON WRITES A RECORD IT TRANSFERS THE DATA
FROM COMMON /MENU1l/ KODE,MRFLG,SFACT,LNMOD,LNWID

THE CURRENT SYST 100 VALUES FOR LINE WIDTH
AND TYPE ARE STORED IN COMMON /MENU1l/

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

/BLK/X(30),Y(30),A(10),K(30),KP,ID(80)
/PNTR/KPT(3,2)

/MENU1/ KODE,MRFLG,SFACT,LNMOD,LNWID

JEXEC/ IEXEC(64),REXEC(64)

/DSKBF/ IDUM(3),LENG

/IDENT/ IDA(3)

/TAPE/ IBUF(40),ICRD(80)

/TPDW1/ XX(6),YY(6),IBLANK,ISF,ISF2,IBUFF (20)
/TPDW2/ LS(5),LSF(5),ISFNO,LSF2(5),LSPAN(S5)
/FONT/ IFONT

EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

DATA IBLANK

CALL SAVE(1)

KNT=0
IBAD=0
ISTAT=0
JSTAT=0
KSTAT=0

(K(1),K1)
(K(2),K2)
(K(4),KF)
(K(11),KEY)
(K(12),ISUBF)
(K(13),NSYMB)
(K(15),NCHAR)
(IEXEC(31),JUSTH)
(IEXEC(32),JUSTV)
(X(1),X1)
(Y(1),Y1)
(A(1),ANGLE)
(A(2),TEXTH)
(IEXEC(19),LNMSV), (IEXEC(20),LNWSV)
(IDA(1),IFNO)
(IDA(2),NOR)
(IDA(3),NIF)

/28 /

98

(o Ne]

20

21

22
230

300

GEOINDEX

LSTAT=0
MSTAT=0
MRFLG=0
SFACT=1
LNMOD=1
LNWID=0
IFONT=0
ANGLE=0
JUSTH=1
JUsTV=1
IDA(1)=0
IDA(2)=0
IDA(3)=0

CALL MSGOT (" |TAPEDWG OVERLAY")

CALL NUMIN("||TAPE DRIVE NO. (0 OR 1) ",TEMP)
MTUNIT=TEMP

PAUSE MOUNT TAPE PLEASE

0 CALL NUMIN (" |CHARACTER HEIGHT=",TEXTH)
IF (TEXTH) 200,210,210

0 CALL NUMIN("|SYMBOL # =",TEMP)
NSYMB=TEMP
IF (NSYMB) 210,210,220

0 IF (NSYMB-200) 230,230,210
CALL NUMIN("|# OF PENS=,1,2,0R 3",TEMP)
IPEN=TEMP
IF (IPEN .LT. 1) GO TO 230
IF (IPEN .GT. 3) GO TO 230

CALL NUMIN("|TEXT WANTED?? 1=YES,0=NO",TEMP)
IFTEXT=TEMP

SFACT=1.5*TEXTH

CALL MSGOT("|SKIP FILES?")

CALL YESNO (IANS)

IF(IANS .EQ. 1)CALL SKIP(MTUNIT,JSTAT)
IF(JSTAT .NE. 0)GO TO 6000

LNWID=LNWID+1
IF (LNWID.GT.IPEN) LNWID=1

READ HEADER CARD
IFNO=0
ISFNO=0
NOR=0
NIF=0
CHECK FOR FULL DRAWING FILE

CALL MODLC(KPT(1,2),-3000,MSTAT)
GO TO (800,7300,7300),MSTAT

800

1000

320

330

335

340

350

APPENDIX C

CONTINUE
CALL FCKBK(LSTAT)

IF(LSTAT .NE. 0)GO TO 7000

DO 1000 I=1,40

IBUF (I)=IBLANK

CONTINUE

CALL RDTAPE (MTUNIT,IBUF,40,0,80,JSTAT)
IF(JSTAT .EQ. 4)GO TO 5000

IF(JSTAT .NE. 0)GO TO 6000

CALL CKCRD (IBAD)
IF(IBAD .EQ. 1)GO TO 800

CALL HEXS

CALL RDHDR

NCHR1=5
NCHR2=5
NCHR3=5
NCHR4=5

DO 320 I=1,5

IF (LS(I) .EQ. IBLANK) NCHR1=NCHR1-1
IF (LSF(I) .EQ. IBLANK) NCHR2=NCHR2-1
IF (LSF2(I).EQ. IBLANK) NCHR3=NCHR3-1
IF(LSPAN(I) .EQ. IBLANK)NCHR4=NCHR4-1
CONTINUE

J=5-NCHR1

DO 330 I=1,NCHR1
LS(I)=LS(I+J)/400K
IBUFF(I)=LS (1)
CONTINUE

WRITE(10,335) (LS(I),I=1,NCHR1)
FORMAT (5016)

J=5-NCHR2

DO 340 I=1,NCHR2
LSF(I)=LSF(I+J)/400K
IBUFF(I+5)=LSF (1)
CONTINUE

IF (NCHR3.EQ.0) GO TO 352
J=5-NCHR3

DO 350 I=1,NCHR3
LSF2(I)=LSF2(I+J) /400K
IBUFF(I+10)=LSF2(I)
CONTINUE

99

100 GEOINDEX

352 IF (NCHR4 .EQ. 0) GO TO 354
J=5-NCHR4
DO 353 I=1,NCHR4
LSPAN(I)=LSPAN(I+J)/400K
IBUFF (I+15)=LSPAN(I)

353 CONTINUE

354 CALL ASFLC (IBUFF(l),NCHR1,TEMP,ISTAT)
ISUBF=TEMP+.5
WRITE(10,20) ISUBF

20 FORMAT(I6)
IF (ISUBF .EQ. 9999) GO TO 500

CLEAR SCREEN

[NeNe]

KNT=KNT+1
IF(KNT .NE. 26)GO TO 1100
KNT=0
CALL ERASE
1100 CONTINUE

CALL ASFLC(IBUFF(6),NCHR2,TEMP,ISTAT)
ISF=TEMP+.5

IF(ISTAT .EQ. 1)ISF=1

CALL ASFLC (IBUFF(l1),NCHR3,TEMP,ISTAT)
NOT=TEMP+.5

IF (ISTAT.EQ.1) NOT=0

CALL ASFLC(IBUFF(16),NCHR4,TEMP,ISTAT)
ISPAN=TEMP+.5

IF(ISTAT .EQ. 1)ISPAN=0

IE=ISFNO

IF(ISFNO .GE. 6)IE=6

c
c READ FIRST DATA CARD
c
1

200 CONTINUE
CALL FCKBK(LSTAT)
IF(LSTAT .NE. 0)GO TO 7000
DO 1500 I=1,40
IBUF (I)=IBLANK
1500 CONTINUE
CALL RDTAPE (MTUNIT,IBUF,40,0,80,JSTAT)
IF(JSTAT .EQ. 4)GO TO 5000
IF(JSTAT .NE. 0)GO TO 6000

C

CALL CKCRD (IBAD)

IF(IBAD .EQ. 1)GO TO 1200
C

CALL HEXS8
C

CALL RDCRD (KSTAT)
IF(KSTAT .EQ. 1)GO TO 6500

a0

[e N el

360

370

375

377

380

390

400

IF (IFTEXT .NE.

X1=XX(1)
Y1=YY(1)
NCHAR=NCHR1

DO 360 I=1,NCHRI1
ID(I)=LS(I)
CONTINUE

KEY=8

KP=1

CALL RWCON (KF,2)
KEY=16

CALL RWCON (KF,2)

IF (ISF.EQ.1.AND.IFNO.EQ.1l) GO TO 375

NCHAR=NCHR2

DO 370 I=1,NCHR2
ID(I)=LSF(I)
CONTINUE

KEY=16

CALL RWCON (KF,2)

1)

APPENDIX C

GO TO 400

IF(ISPAN .EQ. 0)GO TO 380

NCHAR=NCHR4

DO 377 I=1,NCHR4
ID(I)=LSPAN(I)
CONTINUE

KEY=16

CALL RWCON (KF,2)

IF (NOT.EQ.0) GO TO 400

NCHAR=NCHR 3

DO 390 I=1,NCHR3
ID(I)=LSF2(I)
CONTINUE

KEY=16

CALL RWCON (KF,2)

X1=XX(2)
YI=YY(2)

SYMBOL NEEDED IF THIS IS SINGLE PT

IF (ISFNO.GT.2) GO TO 410

KEY=7

KP=1

CALL RWCON(KF,2)
GO TO 300

101

102 GEOINDEX

WRITE PEN UP

OO0

410 KEY=1
KP=1
CALL RWCON(KF, 2)
JJ=3
GO TO 430

420 CONTINUE
CALL FCKBK(LSTAT)
IF(LSTAT .NE. 0)GO TO 7000
DO 2000 I=1,40
IBUF (I)=IBLANK
2000 CONTINUE
CALL RDTAPE(MTUNIT,IBUF,40,0,80,JSTAT)
IF(JSTAT .EQ. 4)GO TO 5000
IF(JSTAT .NE. 0)GO TO 6000

CALL CKCRD (IBAD)
IF(IBAD .EQ. 1)GO TO 420

CALL HEXS8

CALL RDCRD (KSTAT)
IF(KSTAT .EQ. 1)GO TO 6500

WRITE PEN DOWN

[eNeoNEesEesNe!

430 KEY=6
KP=1
DO 440 I=JJ,IE
X1=XX(I)
Y1=YY(I)
CALL RWCON(KF,2)
440 CONTINUE
JI=1
IF (ISFNO-6) 300,300,450
450 ISFNO=ISFNO-6
IE=ISFNO
IF (ISFNO.GE.6) IE=6
GO TO 420

c

c EOF FOUND

c

5000 CONTINUE
CALL MSGOT("|END OF FILE REACHED?")
GO TOo 7000

c

c TAPE ERROR

c

6

000 CONTINUE
WRITE(10,1001)JSTAT

APPENDIX C

1001 FORMAT(1X, TAPE ERROR #°,I1)
GO TO 7000

C

C DATA ERROR

C

6500 CONTINUE

WRITE(10,1002)
1002 FORMAT(1X, DATA ERROR’)
c

c REWIND UNIT O

103

,2(/1X,°DO NOT REWIND TAPE||’),/1X

*SAVE DRAWING FILE,GET NEW DRAWING FILE AND RECALL TAPEDWG OVERLA

C
7000 CONTINUE
CALL MSGOT(’ |REWIND TAPE?’)
CALL YESNO (IANS)
IF(IANS .NE. 1)GO TO 7500
CALL REWIN(MTUNIT)
GO TO 7500
7300 CONTINUE
CALL BELL
WRITE(10,1003)
1003 FORMAT(1X, ’DRAWING FILE FULL]|"
\e,”’
\eY”’
*)
7500 CONTINUE
c
C DONE
C
500 ISUBF=999
CALL MSGOT (" |PROGRAM FINISHED]||")
KEY=31
CALL RWCON(KF,2)
KP=0
CALL OVRLY(1l,IER)
CALL EXIT2
END

PROGRAM NAME: DWGDISK

Author: Lawrence Balcerak

Purpose of the program: dwgdisk reads a System 101
drawing file and writes an ASCII disk file containing
the header card and data cards for each feature
outline.

Data base: Geoindex

Computer: Data General Nova 1220

Operating system: System 101

Calling sequence: dwgdisk

Arguments: None

Subroutines called: fclfl, fopfl, save, numin, msgot,
yesno, rwcon, asflc, fcnot, ovrly, exit2, filnam, fdffl,
xdmsg

Common data referenced: /PUNCH/ Most Bendix
subroutines read from or write to common blocks.

Read “System 100 Programmers manual” (S100PM)
for further information.

Input files: bordNMdw, gridNMdw, statNMdw, coun-
NMdw, redNM, blueNM, greenNM

Output files: bordNM, gridNM, statNM, counNM,
redNM, blueNM, greenNM

Arrays used: None

Error checking and reporting: None

Constants: None

Program logic:
1. Pause. Stops execution of program until a return is

sent. Prints message:
PAUSE FOR OPERATOR

2. Call fclfl (clears a file and releases slot 0).

3. Send message to terminal:
NAME OF DISK OUTPUT FILE = 77

104

10.

11.

12,

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

GEOINDEX

. Call flnam to receive a file name from the keyboard | 23.

and store in name.
igood is the returned status code.

. If igood = 1, go to step 6 (acceptable file name).

If igood = 2, go to step 3 (file name too long).
If igood = 3, go to step 78. Control d or cr on first
character was entered.

. Call fopfl. This opens the file name for writing and

assigns it to file slot 0. istat is the monitor error
code.

. If istat is not equal to 0, go to step 9. At this point a

nonzero value is an error.

. Send message to terminal:

OLD FILE-OK???.
Call yesno. If yes, go to step 15. If no, go to step 2.

. If istat is not equal to octal 204, go to step 14. This

is the status code for a new file.

Send message to terminal:

NEW FILE-OK??

Call yesno. If yes, go to step 11. If no, go to step
2.

Call fdffl, which defines a file name name. istat is
the monitor error code.

If istat is not equal to 0, go to step 14.

Call fopfl. This opens the file name for writing and
assigns it to file slot 0. If there are no errors then
istat = 0; go to step 15.

Call xdmsg(istat). This prints a disk operating
system error message based on istat. Go to step 2.

Send message to terminal:

DO YOU WISH TO WRITE AN EOF FLAG

ON THIS FILE??.
If you must run this program several times, you
will later concatenate the several files and will
need an EOF flag only in the last file.

Call save(1). This saves critical constants from the
systems common blocks that are parameters
describing the drawing file. These constants will
be needed at the end of the program to restore the
operation to the table with the same parameters.

Set nif = 0. This variable on the header card in-
dicates grid, county, and so forth.

Send message to terminal:

TYPE 2 DIGIT STATE NUMBER
Call numin to receive number.

Set nor = to returned number.

Send message to terminal:

IS THIS THE GRID BEING WRITTEN??
Call yesno. If yes, go to step 21. If no, go to step 22.
Set nif = 991 (indicates the grid).

Go to step 25.

Send message to terminal:

IS THIS THE COUNTIES BEING

WRITTEN??

24.
25.
26.

27.

28.

29.

Call yesno. If yes, got to step 24. If no, go to step
25.

Set nif = 992 (indicates the counties).

Set iifno(i) = 0 for i = 1,2000.

Set kpt(kf,1) = 1. Set the read pointer for the draw-
ing file to the first record. Steps 27-30 will read
the drawing file until the first text position that
occurs in the drawing file is read.

Set kp = 1. When reading a drawing file, rwcon
uses x(kp) and y(kp).

Call rweon (kf,1). kf (equivalent to k(4)) is the active
file. The 1 indicates a read.

If key = 31 (EOF), go to step 77.

Note: Several assumptions are made concerning the
drawing file. Each outline begins with a text string
identifying the feature number, subfeature number,
span and second subfeature number, with a default of
0 for any absent text. There can be any number of line
segments that make up an outline.

30.

31.

32.

33.

34.

35.

36.

If key is not equal to 8 (text position), go to step 27.
Steps 31-39 read through the drawing file coun-
ting the number of points for each outline and
counting the number of outlines that have the
same feature number. This must be done before
punching starts because the information is on the
header card.

Set kount = 1. This is a count of the number of
points in an outline. The text position is the first
point.

Set inum =
outlines.
Set numtext = 0. This is the count of how many

lines of text are in the outline being read.

Set kp = 1.

Call rweon to read a record.

If key = 31 (EOF), go to step 37.

If key = 8 (text position), go to step 37.

If key = 16 (text string), go to step 34.

If key = 1 (pen up), or if key = 6 (pen down), or if
key = 7 (symbol position), add 1 to kount.

Go to step 32.

Add 1 to numtext (one more text string found).

If numtext is greater than 1, go to step 37. We are
interested in only the first text string at this time.

Set ibuf(i) = id(i). This contains the character string
just read.

Call asflc to find the number, temp, represented by
the text in ibuf(i).

If istat = 1, go to step 32. An error code of 1 is
returned for any abunormality.

Add 1 to the count of number of outlines that have
same feature number as the new outline just
started. Go to step 32.

1. This is a count of the number of

37.

38.

39.

40.
41.
42.
43.

44.
45.

46.

47,

48.

49.
50.

51.
52.

53.
54.

APPENDIX C
55.

Set iburp(inum) = kount. This is a count of the
number of points for each outline.

Set kount = 1. Start count over.

Add 1 to inum (sequence number of next outline).
If key = 31 (EOF), go to step 40. There are two
ways to reach this step: key = 31 or key = 8.
The only way to reach this step was if key = 8 (text
position), which starts a new outline. Go to step
32. Steps 40-44 will read the drawing file until the
first text position that occurs in the drawing file is
read. These statements start reading the drawing

file from the first record.

Set kpt(kf,1) = 1. This sets the read pointer for the
drawing file to the first record.

Set inum = 1 (outline count).

Set kp = 1. Call rwcon to read a record.

If key = 31 (EOF), go to step 79. Then the program
is almost finished.

If key is not equal to 8 (text position), go to step 42.

Set kount = 0. This is a counter for the number of
text strings found for an outline. None is found
yet.

Set knum = 2. This is a counter for the number of
the point to be processed. One is already proc-
essed.

Set isfno = iburp(inum) (the number of points).

Add 1 to inum (sequence number of next outline).

Set iup = 1. This is the counter for the number of
pen ups or symbol positions found in one outline.
The first is treated differently from the rest.

Set isf = 1. This will be 1 unless changed in a text
string.

Set not = 0.

Set ispan = 0 (default values).

Set xp(1) = x1.

Set yp(1) = y1. This is the text position.

For i = knum, 6:

Set xp(i) = 0.

Set yp(i) = 0.

If knum = 1, set knum = 0. This will be equal to 1
when a card has just been punched and more
points are needed to complete the outline. It then
branches to the previous step, where it must be 1,
but logic further along demands that it be 0.

Set kp = 1.

Call rweon to read a record.

If key = 31 (EOF), go to step 72.

If key = 8 (text position), go to step 72. This is true |

for all outlines except the first outline.

If key = 16 (text string), go to step 55.

If key = 1 (pen up) or 7 (symbol position), go to step
67.

If key = 6 (pen down), go to step 70.

Go to step 48.

56.

57.

b8.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

70.

105

Add 1 to kount. Another text string found for this
outline.

If kount is greater than 4, go to step 48. kount
should never be greater than 4, because there are
only four possible pieces of information.

Fori = 1, 5, set ibuf(i) = id(i). id(i) contains the text
string from the record read in statement 48.

Call asflc to find the number, temp, represented by
the text in ibuf(i).

If istat = 1, go to step 48. An error code of 1 is
returned for any abnormality.

If kount = 1, go to step 66 (the first text string).

If nif = 992, go to step 64. If this is the county file,
isf represents a bordering county or other boun-
dary.

If there is only one outline and temp is greater than
0, set kount = 4.

This must be a second subfeature number, but
there should not be four text strings.

If there is only one outline and temp is less than 0,
set kount = 8. This must be a span, but there
should not be three text strings.

Seti = kount -1.

If i = 1, go to step 64.

Ifi = 2, go to step 65.

Ifi = 3, go to step 66.

Set isf = temp. To get to this step, one of three con-
ditions existed:
this must have been the second text string with if-
no greater than 1, or this is the counties, or temp
= 0. Go to step 48.

Set ispan = temp. This was the third text string, or
second text string with temp less than 0. Go to
step 48.

not = temp. This was the fourth text string, or
temp greater than 0 and only one outline. Go to
step 48.

iff = temp. This is the feature number. ifno
=iifno(jif). This is the count of outlines with same -
feature number. Go to step 48.

If key = 1 (pen up) and jup is greater than 1, go to
step 70. This is another line segment that must be
concatenated to previous segments.

Add 1 to iup, which is a flag to show what position
the next pen up has in the outline (used in previous
step).

. Set xp(2) = x1

Set yp(2) = y1.
Program writes the header card to the disk file.
Go to step 48.
Add 1 to knum, which is counter for next position.
Set xp(knum) = x1.
Set yp (knum) = y1.

106
71.

72.

73.
74.

75.

76.

77.

78.

cNeNoNeNoNoNeNoNeoNsNeoNeoNeNeoNeNe Nel

GEOINDEX

If knum is less than 6, go to step 48.
Otherwise, go to next step. The card should have
six points to be written.
If knum = 0, go to step 74. The last card written
had six points on it and finished an outline.
Program writes xp(i) and yp(i) to the disk file.
If key = 31 (EOF), go to step 78. Then, the program
is almost finished.
If key = 8 (text position), go to step 45. A new
outline is to be processed; default values must be
reset.
Set knum = 1.
Go to step 46. There are more points in this outline.
Program writes message to terminal:
NO TEXT IN FILE!

Go to step 79.

Program writes message to terminal:
'DONE!

C DWGDISK

WRITTEN 2MAR78 BALCERAK

SOURCE=<DWGDISK:F>
OBJECT=<DWGDISK:R>

PURPOSE:

79. If ieof = 1, go to step 80.

If ieof = 2, go to step 81. This is an indicator for
whether or not an EOF flag is to be written. This
was done in step 15.

80. Set iif = 9999 (the EOF flag). Program writes a

header card to the disk file.

81. Close file slot 0.

Call fenot (““ 7) several times to ring the bell. This
produces an audible signal to the operator. Pro-
gram writes message to terminal:

PROGRAM FINISHED

Set kp = 0.

Call save(2) (restores critical constants).

Call overly, a routine that overlays user memory
with selected main program (returns control to
the table).

Call exit2 (overlays signoff for the system).

TO READ A SYSTEM 101 DRAWING FILE LOADED ON
THE DRAWING TABLE-GET THE X,Y COORDINATES
OF THE TEXT REFERENCES AND OF THE LINES

AND WRITE TO DISK IN 12F6.3 FORMAT.

THE HEADER CARD FOR EACH OUTLINE WILL ALSO
BE WRITTEN WITH ALL RELAVENT INFORMATION.

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
$§ IIFNO(2000)

/PNTR/ KPT(3,2)
/LINBF/ LTYPE,LWIDE

/DSKBF/ IDUM(3),LENG
/IDENT/ IDA(3)

EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

(K(1),K1)
(K(2),K2)
(K(4),KF)
(K(11),KEY)
(K(15),NCHAR)
(X(1),X1)
(Y(1),Y1)

/BLK/ X(30),Y(30),A(10),K(30),KP,ID(80)

/MENU1/ KODE,MRFLG,SFACT,LNMOD,LNWID
JEXEC/ IEXEC(64) ,REXEC(64)

/PUNCH/ XP(6),YP(6),IBUF(5),IBURP(2000),NAME(10),

APPENDIX C 107

oNeNeNe]

PAUSE FOR OPERATOR
1000 CALL FCLFL (0,IER)
1010 CALL MSGOT (" |NAME OF DISK OUTPUT FILE=2?? ")
* CALL FLNAM (NAME,IGOOD)
GO TO (1020,1010,500),1IG00OD
1020 CALL FOPFL (NAME,O0,1,ISTAT)
IF (ISTAT .NE. 0) GO TO 1030
CALL MSGOT (" |OLD-FILE. OK?? ™)
CALL YESNO (IANS)
GO TO (1,1000),IANS
1030 IF (ISTAT .NE. 204K) GO TO 1050
CALL MSGOT (" |NEW-FILE. OK?? ")
CALL YESNO (IANS)
GO TO (1040,1000),IANS

1040 CALL FDFFL(NAME,ISTAT)
IF (ISTAT .NE. 0) GO TO 1050
CALL FOPFL (NAME,O0,1,ISTAT)
IF (ISTAT .EQ. 0) GO TO 1
1050 CALL XDMSG (ISTAT)
GO TO 1000

1 CALL MSGOT ("|DO YOU WISH TO WRITE AN EOF FLAG ON THIS FILE?? "

\ec)
CALL YESNO (IEOF)

CALL SAVE(1l)
NIF=0
CALL NUMIN ("|TYPE 2 DIGIT STATE NUMBER ",TEMP)
NOR=TEMP
CALL MSGOT ("|IS THIS THE GRID BEING WRITTEN?? ")
CALL YESNO (ISTAT)
GO TO (2,3),ISTAT
2 NIF=991
GO TO 5
3 CALL MSGOT ("|IS THIS THE COUNTIES BEING WRITTEN?? ")
CALL YESNO (ISTAT)
GO TO (4,5),ISTAT
NIF=992
DO 6 1I=1,2000
IIFNO(I)=0
6 CONTINUE
KPT (KF, 1)=1

w

a0

START READING RECORDS AND WRITTING TO DISK

10 KP=1
CALL RWCON (KF,1)
IF (KEY .EQ. 31) GO TO 350
IF (KEY .NE. 8) GO TO 10
KOUNT=1

108 GEOINDEX

INUM=1
NUMTEXT=0
20 KpP=1

CALL RWCON (KF,1)

IF (KEY .EQ. 31) GO TO 30

IF (KEY .EQ. 16) GO TO 25

IF (KEY .EQ. 8) GO To 30

IF ((KEY .EQ. 1) .OR. (KEY .EQ. 6) .OR. (KEY .EQ. 7))
* KOUNT=KOUNT+1

GO TO 20

25 NUMTEXT=NUMTEXT+1
IF (NUMTEXT .GT. 1) GO TO 20
DO 27 1I=1,5

27 IBUF(I)=ID(I)
CALL ASFLC (IBUF,NCHAR,TEMP,ISTAT)
IF (ISTAT .EQ. 1) GO TO 10
IIF=TEMP+0.5

30 IBURP(INUM)=KOUNT
KOUNT=1
INUM=INUM+1
IF (KEY .EQ. 31) GO TO 40
ITFNO(IIF)=IIFNO(IIF)+1
NUMTEXT=0
GO TO 20

40 KPT(KF,1)=1
INUM=1

50 KP=1
CALL RWCON (KF,1)
IF (KEY .EQ. 31) GO TO 500
IF (KEY .NE. 8) GO TO 50
55 KOUNT=0
KNUM=2
ISFNO=IBURP (INUM)
INUM=INUM+1
ISF=1
1UP=1
NOT=0
ISPAN=0
XP(1)=X1
YP(1l)=Y1
60 DO 65 I=KNUM,6
XP(I)=0
YP(I)=0
65 CONTINUE
IF (KNUM .EQ. 1) KNUM=0

70 Kp=1
CALL RWCON (KF,1)

80

85

90

95

100

105

110

120

130

140

150
160

(@]

350

APPENDIX C 109

IF (KEY .EQ. 31) GO TO 140

IF (KEY .EQ. 8) GO TO 140

IF (KEY .EQ. 16) GO TO 80

IF ((KEY .EQ. 1) .OR. (KEY .EQ. 7)) GO TO 110
IF (KEY .EQ. 6) GO TO 130

GO TO 70

KOUNT=KOUNT+1

IF (KOUNT .GT. 4) GO TO 70

DO 85 I=1,5

IBUF(I)=1ID(1)

CALL ASFLC (IBUF,NCHAR,TEMP,ISTAT)
IF (ISTAT .EQ. 1) GO TO 70

IF (KOUNT .EQ. 1) GO TO 105

IF (NIF .EQ. 992) GO TO 90

IF((IFNO .EQ. 1) .AND. (TEMP .GT. 0.0)) KOUNT=4
IF ((IFNO .EQ. 1) .AND. (TEMP .LT. 0.0)) KOUNT=3
I=KOUNT-1

GO TO (90,95,100),1

ISF=TEMP

GO TO 70

ISPAN=TEMP

GO TO 70

NOT=TEMP

GO TO 70

IIF=TEMP+0.5

IFNO=IIFNO(IIF)

GO TO 70

IF ((KEY .EQ. 1) .AND. (IUP .GT. 1)) GO TO 130
IUP=IUP+1

XP(2)=X1

YP(2)=Y1

WRITE (0,120) IIF,IFNO,ISF,ISFNO,NOT,NOR,NIF,ISPAN
FORMAT (1X,8I5)

GO TO 70

KNUM=KNUM+1
XP (KNUM) =X1

YP (KNUM)=Y1

IF (KNUM .LT. 6) GO TO 70
IF (KNUM .EQ. 0) GO TO 160
WRITE (0,150) (XP(I),YP(I),I=1,6)
FORMAT (1X,12F6.3)

IF (KEY .EQ. 31) GO TO 500
IF (KEY .EQ. 8) GO TO 55
KNUM=1

GO TO 60

DONE

CALL FCNOT (" |NO TEXT IN FILE|")

110

500 CALL FCNOT ("|DONE|")
GO TO (510,520),IEOQF

510 TIIF=9999

GEOINDEX

WRITE (0,120) IIF,IFNO,ISF,ISFNO,NOT,NOR,NIF,ISPAN

520 CALL
CALL
CALL
CALL
KP=0
CALL
CALL
CALL
END

FCLFL (0, IER)
FCNOT ("<7>")
FCNOT ("<7><7><7>")
FCNOT ("<7>")

SAVE(2)
OVRLY (1l,IER)
EXIT2

PROGRAM NAME: SELDISK

Awuthor: Lawrence Balcerak

Purpose of the program: seldisk reads through an
ASCII disk file containing coordinate outlines and
places selected outlines into a drawing file.

Data base: Geoindex

Computer: Data General Nova 1220

Operating system: System 101

Calling sequence: seldisk

Arguments: None

Subroutines called: fclfl, fcnot, flnam, fopfl, msgot,
numin, ovrly, rwcon, save, xdmsg, asfic

Common data referenced: /Punch/ Most Bendix
subroutines read from or write to common blocks.
Read “System 100 Programmers Manual” (S100PM)
for further information.

Input files: None

Output files: None

Arrays used: None

Error checking and reporting: None

Constants: None

Program logic:

1. Call save(1) (saves critical constants from the
systems common blocks that are parameters
describing the drawing file). These will be needed
at the end of the program to restore operation to
the table with the same parameters.

2. Set mrflg = 0. mrflg is the mirror flag. 0 indicates
no mirroring.

Set sfact = 1. sfact is scale factor.

Set Inmod = 1. Inmod is line type. 1 indicates a
solid line.

Set Inwin = 0. Inwin is pen number (initial value,
which will be changed at a later time).

Set ifont = 0 (system requirement).

Set angle = 0 (angle of rotation for text).

Set justh = 1. justh is horizontal text justification.

1 indicates that the text will be left justified start-
ing at the text location.

Set justv = 1. justv is vertical text justification. 1
indicates that the text will be above the text loca-
tion.

3. Send message to terminal:
SELDISK OVERLAY
PAUSE TURN ON CARD READER
and wait for the return to be pushed. This gives a
chance to make sure that the card reader has been
prepared correctly.
Steps 4-6 open the card reader for use.
4. Call fclfl (clears a file and releases slot 0).
5. Call fopfl (opens the card reader for reading and
assigns it to slot 0).

If jer is equal to 0, go to step 7. Otherwise, go to
step 6. /er is the monitor error code (See S100PM,
p. 236).

6. Write message to terminal:
FOPFL ERROR
and then go to step 72.
7. Call numin. This sends the message:
ICHARACTER HEIGHT =
to the terminal and waits for an answer, which it
places in the real variable texth. This is usually
0.14 inches.
8. If texth is less than 0, go back to step 7. The system
will accept a zero height but not a negative height.
9. Call numin. Sends message:
ISYMBOL # =
and receives answer into temp.
Set nsymb = temp. Change to an integer.
10. If nsymb is greater than 0, go to step 11.

Otherwise, go back to step 9. This must be a positive
integer.

11. If nsymb is greater than 200, go back to step 9. The
range of possible symbol numbers is 1-200.

APPENDIX C 111

12. Set sfact = 1.5 times texth. This is the symbol scale
factor. Our standard symbol for single points (a
small triangle) is constructed 1 inch high. We
usually plot it at 0.21 inches.

13. Set icount = 1. Index counter for the array ifile,
which will contain the feature and subfeature
numbers read from the T-file.

14. Read a feature and subfeature number with a for-
mat of (I8,I2) and place into ifile(icount,1) and
ifile(icount,2).

15. If the feature number = -1, go to step 17. Thisis a
flag for the end of the T-file.

16. Add 1 to icount (to read another card).

Go to step 14.

17. Subtract 1 from icount. We don’t want to count the
flag.

Steps 18-26 open the coordinate outline file for reading.

18. Call fclfl (clears a file and releases slot 0).

19. Send message to terminal:

NAME OF COORDINATE OUTLINE FILE =
22
and wait for an answer.

20. Call flnam to receive the file name, and place it in
the array name.
igood is the returned status code.

21. Ifigood = 1, go to step 22. An acceptable file name
has been read in.

If igood = 2, go back to step 19 (file name too long).
If igood = 3, go to step 72. Control d or er on first
character was entered.

22. Call fopfi. This opens the file name for reading and
assigns it to slot 0. istat is the monitor error code.

23. If istat is not equal to octal 204, go to step 25. This
is the code for a new file. This will be the most
common error,

24. Send message to terminal:

INEW FILE TRY AGAIN!!
Go to step 18.

25. If istat is equal to 0, go to step 27. This indicates an
old file that has no problems in opening.

26. Call xdmsg(istat). This prints a disk operating
system error message based on istat. Go to step
18 to try again.

27. Add 1 to Inwid. This is the pen number, which
changes whenever a new outline starts.

If Inwid is greater than 3, then set Inwid equal to 1.
Only three pens are on this plotter.

28. Read a header card. The feature, subfeature, second
subfeature, and span are read in as characters.
The rest are read as integers.

29. Set nchr1 = 5.

Set nchr2 = 5.
Set nchr3 = 5.

Set nchr4 = 5. These are the character counts for
each of the four strings read from the header
cards.

30. Check each of the four character strings for blanks.
Subtract 1 from the character count for each
blank found.

31. Set J = 5 —nchr1. This is the number of blank
characters.

32. In the character string, /s (feature number) divides
each nonblank character by octal 400. This moves
the bit pattern from the left half of the word to the
right half.

Set the array ibuf starting at element 1 equal to the
right justified nonblank characters.

33. Repeat steps 31 and 32 for the subfeature number,
Isf, and store in ibuf starting at element 6.

34. Repeat steps 31 and 32 for the second subfeature
number, Isf2, and store in ibuf starting at ele-
ment 11.

35. Repeat steps 31 and 32 for the span, /span, and
store in ibuf starting at element 16. In the last
three steps, there is a possibility that the number
of characters is 0 (a blank field on the card). This
will be accounted for when the subroutine asflc is
called for each number.

36. Call asflc to change the nchr1 characters starting
at ibuf(1) to the real number temp.

Set isubf = temp + 0.5. Change to an integer, but
add 0.5 first to make sure the number is truncated
correctly. This is the feature number as well as the
subfile number.

37. If isubf is equal to 9999, go to step 72. This is the
end-of-file flag, EOF, so the job is finished. The
system does not recognize an end = option in a
read statement, hence the need for the end-of-file
flag.

If isubf is greater than 1,000, subtract 1,000 from
isubf.

If isubf is equal to 1,000, set isubf = 998. More
than 1,000 outlines are possible, but only 999 sub-
files are.

38. Call asflc using the nchr2 characters starting at
ibuf(6) to find isf the subfeature number. istat is
the returned error code that is 0 for no errors and
equal to 1 for an error. The possible errors are as
follows: no characters, a nonnumeric character,
more than one plus or minus sign or decimal point,
a plus or a minus sign somewhere other than posi-
tion number one.

39. If istat is equal to 1, set isf = 1. This will be the
default value.

40. Call asflc using nchr3 characters starting at
ibuf(11) to find not, the second subfeature
number.

112

41.
42.

43.

44.

45.
46.

47,

48.

49.

50.

51.
52.

53.

54.

55,

56.

57.
58.

GEOINDEX

If istat is equal to 1, set not = 0 (the default value).

Call asflc using nchr4 characters starting at
ibuf(16) to find ispan, the span (should be
negative or zero).

If istat is equal to 1, set ispan =
value).

Go through the ifile array to see if an entry matches
the feature number, isubf, and the subfeature
number, isf.

If a match is found, go to step 47.

Read a data point record. Skip this outline.

Subtract 6 from isfno. Six data points are on each
record.

If there are more data point records for this outline,
isfno is greater than 0, go to step 44. Otherwise,
go to step 28 to read the next header card.

Set je equal to the minimum of (6,isfno). There are
a maximum of six points per record.

Read ie data points from the next record into xx and
yy.

Set x1 = xx(1).

Set y7 = yy(7). This is the data point written to the
drawing file when rwcon is called.

Set nchar = nchri. This is the number of
characters to be written as a text string when
rweon is called.

For i = 1, nchri1, set id(i) = Is(i) (feature number).
id is the array from which rweon gets the text
string.

Set key = 8 (the indicator that is a text position).

Set kp = 1. When writing a drawing file record,
rweon uses X(kp) and y(kp).

Call rweon(kf,2). kf (equivalent to k(4)) is the active
file. The 2 indicates a write.

Set key = 16 (text string indicator).

Call rweon to write a record. This writes the text
string record containing the feature number.

Write the feature number to the terminal. This
leaves a record of what has been done to date,
which may be needed if there is some sort of
system failure.

If the subfeature number is not to be placed as text,
g0 to step H7.

Set nchar = nchr2.

Set id(i) = Isf(i), for i = 1, nchr2.

Set key = 16.

Call rweon to write a text string record.

If the span is not to be placed as text, go to step 59.

Set nchar = nchr4.

Set id(i) = Ispan(i), for i = 1, nchr4.

0 (the default

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.
69.

70.

71.

72.

73.

74.

Set key = 16.

Call rweon to write a text string record.

If the second subfeature number is not to be placed
as text, go to 61.

Set nchar = nchr3.

Set id(i) = Isf2(i), for i = 1, nchr3.

Set key = 16.

Call rwecon to write a text string record.

Set x1 = xx(2).

Set y7 = yy(2). Process the second point.

If isfno is greater than 2, go to step 64. Greater
than 2 indicates a line segment. If equal to 2, it
would indicate a single point.

Set key = 7 (the indicator for a symbol).

Set kp = 1.

Call rweon to write a symbol record.

Go to step 27 to start on the next outline.

Set key = 1 (the indicator for a pen up).

Set kp = 1.

Call rweon to write a pen-up record.

Set jj = 3. We have already processed the first 2
points.

Go to step 66.

Read ie data points from the next record into xx and
yy.

Set key = 6 (the indicator for pen down).

Set kp = 1.

Do for i = jj, ie.

Set x1 = yy(i).

Set y1 = yy(i).

Call rwecon to write a pen-down record.

Set jj = 1 (will start with first data point next time).

If there are no more data points for this outline, go
to step 27 to start on the next.

Subtract 6 from isfno. This computes how many
more points are left to complete the outline.

Set ie = minumum of (6,isfno).

Go to step 64.

Set isubf = 999. Subfile 999 indicates that the
whole drawing file is being referred to.

Set key = 31 (the indicator for an EQF).

Call rwecon to write an EOF record.

Call fclfl to clear the disk file and release slot 0.

Call fcnot (““ 7) several times to ring the bell. This
produces an audible signal to the operator.

Write to the terminal:

IPROGRAM FINISHED!

Set kp = 1.

Call ovrly. This overlays user memory with selected
main program; it returns control to the table.

Call exit2 (overlays signoff for the system).

OO0 0O0O00O00O00O00O0000O00O00O00O000000000n

SELDISK

WRITTEN 2MAR78

SOURCE=
OBJECT=

<SELDISK:F>
<SELDISK:R>

PURPOSE:

APPENDIX C

BALCERAK

TO READ A GROUP OF PTS FROM A DISK FILE

AND CREATE A SYST 101 DWG FILE.

THERE WILL

BE A HEADER CARD FOLLOWED BY DATA CARDS
WITH 6 PTS PER CARD IN 12F6.3 FORMAT.
THE PROGRAM SELECTS ONLY CERTAIN FILES .

REMARKS:
THIS PROGRAM HAS KNOWLEDGE OF FILE STRUCTURE.

WHEN RWCON READS A RECORD IT TRANSFERS
THE DATA TO COMMON /LINBF/ LTYPE,LWIDE
AND TO COMMON /SYMBF/ MIRSY,SKLSY

WHEN RWCON WRITES A RECORD IT TRANSFERS THE DATA
FROM COMMON /MENUl/ KODE,MRFLG,SFACT,LNMOD,LNWID

THE CURRENT SYST 100 VALUES FOR LINE WIDTH
AND TYPE ARE STORED IN COMMON /MENU1l/

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

/BLK/X(30),Y(30),A(10),K(30),KP,ID(80)

/PNTR/KPT(3,2)

/MENU1/ KODE,MRFLG,SFACT,LNMOD,LNWID
JEXEC/ IEXEC(64),REXEC(64)

/DSKBF/ IDUM(3),LENG

/PUNCH/ XX(6),YY(6)

/CRDWG/ LS(5),
ISF,ISF2,IBLANK,IBUF(20),IFILE(1000,2)

/CRDWG/
/FONT/ IFONT

LSF(5),ISFNO,LSF2(5),LSPAN(5),NAME(10)

EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

(K(1),K1)
(K(2),K2)
(K(4),KF)
(K(11),KEY)

(K(12),ISUBF)
(K(13),NSYMB)
(K(15),NCHAR)

(IEXEC(31),JUSTR)
(IEXEC(32),JUSTV)

(X(1),Xx1)
(Y(1),Yl)
(A(1) ,ANGLE)
(A(2),TEXTH)

113

114 GEOINDEX

C
DATA IBLANK /2H /
C
c
C
C
C
CALL SAVE(1l)
MRFLG=0
SFACT=1
LNMOD=1
LNWID=0
IFONT=0
ANGLE=0.
JUSTH=1
JUSTV=1
c
CALL MSGOT("|SELDISK OVERLAY")
PAUSE TURN ON CARD READER
CALL FCLFL(0,IER)
CALL FOPFL("/CDR",0,0,IER)
IF (IER) 150,200,150
150 CALL MSGOT("|FOPFL ERROR|")
GO TO 500
c
200 CALL NUMIN("|CHARACTER HEIGHT=",TEXTH)
IF (TEXTH) 200,210,210
210 CALL NUMIN("|SYMBOL # =",TEMP)
NSYMB=TEMP
IF (NSYMB) 210,210,220
220 IF (NSYMB-200) 230,230,210
230 SFACT=1.5*TEXTH
C

ICOUNT=1
240 READ (0,250) IFILE(ICOUNT,1),IFILE(ICOUNT,2)
250 FORMAT (18,12,)

IF (IFILE(ICOUNT,l1) .EQ. -1) GO TO 260

ICOUNT=ICOUNT+1

GO TO 240
260 ICOUNT=ICOUNT-1

270 CALL FCLFL (0,IER)
280 CALL MSGOT (" |NAME OF COORDINATE OUTLINE FILE=?? ")
CALL FLNAM (NAME,IGOOD)
Go TO (290,280,500),IGO0D
290 CALL FOPFL (NAME,O0,0,ISTAT)
IF (ISTAT .NE. 204K) GO TO 295
CALL MSGOT ("|NEW FILE TRY AGAIN|| ")
GO TO 270
295 IF (ISTAT .EQ. 0) GO TO 300
CALL XDMSG (ISTAT)
GO TO 270

300 LNWID=LNWID+1
IF (LNWID.GT.3) LNWID=1

c
C
C

(@]

@]

305

310

320

330

340

350

352

353

APPENDIX C

READ HEADER CARD

READ (0,310) (LS(I),I=1,5),IFNO,(LSF(J),J=1,5),
*# ISFNO,(LSF2(M),M=1,5),NOR,NIF, (LSPAN(L),L=1,5)

FORMAT (5A1,I5,5A1,15,5A1,21I5,5A1)
NCHR1=5
NCHR2=5
NCHR3=5
NCHR4=5

po 320 1=1,5

IF (LS(I) .EQ. IBLANK) NCHR1=NCHR1l-1
IF (LSF(I) .EQ. IBLANK) NCHR2=NCHR2-1
IF (LSF2(1).EQ. IBLANK) NCHR3=NCHR3-1

IF (LSPAN(I) .EQ. IBLANK) NCHR4=NCHR4-1

CONTINUE

J=5-NCHR1

DO 330 I=1,NCHR1
LS(I)=LS(I+J)/400K
IBUF(I)=LS (1)
CONTINUE

J=5-NCHR2

DO 340 I=1,NCHR2
LSF(I1)=LSF(I+J) /400K

IBUF (I1+45)=LSF(1)

CONTINUE

IF (NCHR3.EQ.0) GO TO 352

J=5-NCHR3

DO 350 I=1,NCHR3
LSF2(I1)=LSF2(I+J) /400K
IBUF(I+10)=LSF2(I)
CONTINUE

J=5-NCHR4

DO 353 I=1,NCHR4
LSPAN(I)=LSPAN(I+J)/400K
IBUF(I+15)=LSPAN(I)
CONTINUE

CALL ASFLC (IBUF(l),NCHR1,TEMP,ISTAT)
ISUBF=TEMP+.5

IF (ISUBF .EQ. 9999) GO TO 500
IF (ISUBF .GT. 1000) ISUBF=ISUBF-1000
IF (ISUBF .EQ. 1000) ISUBF=998

115

116

1000
1010

1050

a

355

360

365

370

375

GEOINDEX

CALL ASFLC(IBUF(6),NCHR2,TEMP,ISTAT)
ISF=TEMP+.5

IF (ISTAT .EQ. 1) ISF=1

CALL ASFLC (IBUF(l1),NCHR3,TEMP,ISTAT)
NOT=TEMP+.5

IF (ISTAT .EQ. 1) NOT=0

CALL ASFLC (IBUF(16),NCHR4,TEMP,ISTAT)
ISPAN=TEMP+.5

IF (ISTAT .EQ. 1) ISPAN=0

DO 1000 I=1,ICOUNT
IF (IFILE(I,l) .NE. ISUBF) GO TO 1000
IF (IFILE(I,2) .EQ. ISF) GO TO 1050
CONTINUE

READ (0,355) XX(1)

ISFNO=ISFNO-6

IF (ISFNO) 305,305,1010

IE=ISFNO
IF(ISFNO .GE. 6)IE=6

READ FIRST DATA CARD

READ (0,355) (XX(I),YY(I),I=1,IE)
FORMAT (12F6.3)
X1=XX(1)
Y1=YY(1)
NCHAR=NCHR1

DO 360 I=1,NCHRI
ID(I)=LS (1)
CONTINUE

KEY=8

KP=1

CALL RWCON (KF, 2)
KEY=16

CALL RWCON (KF,2)

WRITE (10,365) TISUBF
FORMAT (I6)

IF ((ISF .EQ. 1) .AND. (IFNO .EQ. 1))
NCHAR=NCHR2

DO 370 I=1,NCHR2

ID(I)=LSF(I)

CONTINUFE

KEY=16

CALL RWCON (KF,2)

IF (ISPAN .EQ. 0) GO TO 380
NCHAR=NCHR4

DO 377 I=1,NCHR4
ID(I)=LSPAN(I)

GO TO 375

@]

Q

a0

a0

377

380

390

400

410

420

430

440

450

APPENDIX C

CONTINUE
KEY=16
CALL RWCON(KF, 2)

IF (NOT .EQ.0) GO TO 400
NCHAR=NCHR3

DO 390 I=1,NCHR3
ID(I)=LSF2(1)

CONTINUE

KEY=16

CALL RWCON (KF,2)

X1=XX(2)
Yl=YY(2)

SYMBOL NEEDED IF THIS IS SINGLE PT

IF (ISFNO.GT.2) GO TO 410
KEY=7

KP=1

CALL RWCON (KF, 2)

GO TO 300

WRITE PEN UP

KEY=1

Kp=1

CALL RWCON(KF, 2)
JJ=3

GO TO 430

READ (0,355) (XX(I),YY(I),I=1,IE)
WRITE PEN DOWN

KEY=6

Kp=1

DO 440 I=JJ,IE

X1=XX(1)

Yl=YY(I)

CALL RWCON (KF,2)
CONTINUE

JJ=1

IF (ISFNO-6) 300,300,450

ISFNO=ISFNO-6
IE=ISFNO

IF (ISFNO.GE.6) IE=6
GO TO 420

DONE

117

118

500 ISUBF=999

KEY=31

CALL RWCON(KF, 2)
CALL FCLFL (O, IER)
CALL FCNOT ("<7>")
CALL FCNOT ("<7>")
CALL FCNOT ("<7>")
CALL
KP=0
CALL
CALL
CALL
END

SAVE (2)
OVRLY (1, IER)
EXIT2

GEOINDEX

MSGOT (" !PROGRAM FINISHED!!")

PROGRAM NAME: DWGTAPE

Awuthor: Lawrence Balcerak

Purpose of the program: dwgtape reads a System 101
drawing file, writes to tape the binary representation
of the header card and data cards for each feature
outline. Options are to write all or only one of the
feature numbers. Also either all or only the first data
card for each outline can be written.

Data base: Geoindex

Computer: Data General Nova 1220

Operating system: System 101

Calling sequence: dwgtape

Arguments: None

Subroutines called: save, numin, msgot, yesno,
rwecon, asflc, fcnot, ovrly, exit2, rdtape, wrtape,
wreof

Common data referenced: /Punch/ Most Bendix
subroutines read from or write to common blocks.
Read “SYSTEM 100/101 Programmers Manual”
(SC100PM) for further information.

Input files: None

Output files: None

Arrays used: None

Called by: None

Error checking and reporting: None

Constants: None

Program logic: This program is designed to write the ex-
act bit pattern of integers and real numbers used on
an IBM/370. The tape will be read using a 20A4 for-
mat that preserves the bit pattern. The Bendix
minicomputer has a four-byte real number, which is
exactly the same as the IBM real number. However,
the integer is only two bytes versus four for the IBM.

Using a 12-element integer array, which is made

equivalent to a 6-element real array, the program
writes the integers in binary to the tape. When
writing the header card, expand each integer to four
bytes by writing alternate zeros.

R

11.

12.

13.

14.

15.
16.
17.

. Pause. Stops execution of program until a return is

sent. Prints message:
TAPE UNIT NO. (0 OR 1)

Call save(1) (saves critical constant).

Call numin (sends message to terminal asking what
feature number you want punched). This real
number is then placed in temp. Use 9999 if you
want all features.

Set ifnum = temp. Change to an integer.

Send message to terminal:

DO YOU WISH THE FIRST DATA CARD
ONLY??

Call yesno to receive a yes or no, which then sets
the variable janswer = 1(yes) or 2(no). It will not
accept any other answer.

Set nif = 0. This variable on the header card in-
dicates grid, county, and so forth.

Send message to terminal:

TYPE 2 DIGIT STATE NUMBER

Call numin to receive number.

Set nor = State number, which user types in.

Send message to terminal:

IS THIS THE GRID BEING PUNCHED??

Call yesno.

If yes, go to step 12. If no, go to step 13.

Set nif = 991 (indicates the grid).

Go to step 16.

Send message to terminal:

IS THIS THE COUNTIES BEING
PUNCHED??

Call yesno.

If yes, go to step 15. If no, go to step 16.

Set nif = 992 (indicates counties).

Set iifno(l) = 0 for | = 1,1500.

Send message to terminal:

SKIP FILES??

Call yesno to receive answer.

If yes, go to step 18. If no, go to step 23.

APPENDIX C

18. Call numin. Send message:
HOW MANY FILES ??
Receive answer and store in temp.

19. Set iskip = temp.

If iskip is less than 0, go to step 18.
If iskip = 0, go to step 23.
If iskip is greater than 0, go to step 20.

20. Do steps 21-22 for i = 1, iskip

21. Call rdtape to read the tape. jstat is the status
return code.

22. If jstat = 4 (EOF), go to step 20 to read next file.

If jstat does not = 0, go to step 84.
Otherwise, go to step 21.

23. Set kpt(kf,7) = 1. Sets the read pointer for the
drawing file to the first record. Steps 24-28 will
read the drawing file until the first text position is
read for the appropriate feature number.

24. Set kp = 1. When reading a drawing file, rwcon
uses X(kp) and y(kp).

25. Call rweon(kf,1). kf, equivalent to k(4), is the active
file. The 1 indicates a read.

26. If key = 31 (EOF), go to step 83.

Note: Several assumptions are made about the drawing
file. The subfile number is the same as the feature
number. Each outline begins with a text string identi-
fying the feature number, subfeature number, span
and second subfeature number, with a default of 0 for
any absent text. Any number of line segments can
make up an outline.

27. If isubf, subfile number, is not equal to ifnum, and
if ifnum is not equal to 9999, go to step 24. This
searches for the appropriate feature number.

28. Set kount = 1. This is a count of the number of
points in an outline. The text position is the first
point.

Set inum = 1 (a count of the number of outlines).

29. Set iifno(isubf) = 1. This is the count of how many
outlines that have the same feature number.

30. Set kp =1.

Call rweon to read a record.

31. If key = 31 (EOF), go to step 36.

32. If this is not an appropriate outline (check isubf), go
to step 30.

33. If key = 8 (text position), go to step 36.

34. If key = 1 (pen up), or

If key = 6 (pen down), or
If key = 7 (symbol position), add 1 to kount.

35. Go step 30.

36. Set iburp(inum) = kount. This is a count of the
number of points for each outline.

Set kount = 1. Start count over.
Add 1 to inum (sequence number of next outline).

119

37. If key = 31 (EOF), go to step 39. There are two
ways to reach this step: key = 31 or key = 8.

38. Add 1 to the count of number of outlines that have
same feature number as the new outline just
started. This step can be reached only if key = 8
(text position), which starts a new outline. Go to
step 30.

Steps 39-43 will read the drawing file until the first text
position is read for the appropriate feature number.
39. Set kpt(kf,1) = 1. Sets the read pointer for the

drawing file to the first record.

40. Set inum = 1 (outline count).

41. Set kp = 1.

Call rwecon to read a record.

42. If key = 31 (EOF), go to step 85. (Program is fin-
ished.)

43. If this is not an appropriate outline (check isubf),
go to step 41.

44. Set kount = 0. This is a counter for the number of
text string found for an outline. None is found yet.

Set knum = 2. This is a counter for the number of
the points to be processed. One is already process-
ed.

Set iif = isubf (feature number).

Set ifno = iifno(isubf). This is the number of
outlines with same feature number.

Set isfno = iburp(inum) (the number of points).

Add 1 to inum. This is a sequence number of the
next outline,

Set isf = 1. This will be 1 less changed in a text
string.

Set iup = 1. This is a counter for the number of pen
ups or symbol positions in one outline. The first is
treated differently from the rest.

Set not = 0; set ispan = 0 (default values).

Set xp(1) = x1; set yp(1) = y1. This is the text posi-
tion.

45. For i = knum, 6, set xp(i) = 0; set yp(i) =0.

46. If knum = 1, set knum = 0. This will be equal to 1
when a card image has just been written and more
points are needed to complete the outline. It then
branches to the previous step where it must be a
1, but logic further along demands that it be 0.

47. Set kp = 1; call rwecon to read a record.

48. If key = 31 (EOF), go to step 76.

49. If this is not an appropriate outline (check isubf), go
to step 47. More than one outline may have the
same feature number.

50. If key = 8 (text position), go to step 76. This would
be true when an outline other than the first comes
up.

51. If key = 16 (text string), go to step 55.

120

52.
53.
54.
5b.

56.

b7.
58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

69.
70.
T1.

eNeEeNeEe o)

GEOINDEX

If key = 1 (pen up) or 7 (symbol position), go to step
68.

If key = 6 (pen down), go to step 74.

Go to step 47.

Add 1 to kount. Another text is string found for this
outline.

If kount = 1, or kount is greater than 4, go to step
47. If equal to 1, it is the feature number, which is
the same as the subfile number. It should never be
greater than 4.

For i = 1, 5, set ibuf(i) = id(i) (the text string).

Call asflc to find the number, temp, represented by
the text in ibuf(i).

If istat = 1, go to step 47. An error code of 1 is
returned for any abnormality.

If nif = 992, go to step 64. If this is the counties, isf
represents a bordering county or other boundary.

If there is only one outline and temp is greater than
0, set kount = 4. This must be a second sub-
feature number, but there may not be four text
strings.

If there is only one outline and temp is less than 0,
set kount = 3. This must be a span, but there may
not be three text strings.

Seti = kount —-1.1fi = 1, go to step 64. If / = 2, go
to step 65. If i = 3, go to step 66.

Set isf = temp. This must have been the second
text string with ifno greater than 1, or this is the
counties, or temp = 0. Go to step 47.

Set ispan = temp. This was the third text string, or
second text string with temp less than 0. Go to
step 47.

Set not = temp. This was the fourth text string, or
temp greater than 0 and only one outline. Go to
step 47.

If key = 1 (pen up) and jup is greater than 1, go to
step 74. If these two conditions are met, then this
is another line segment that must be concatenated
to previous segments.

Add 1 to jup. This is a flag to show what position the
next pen up has in the outline; used in previous
step.

Set xp(2) = x1; set yp(2) = y1.

Set iout(i) = izero, for i = 1, 24.

Set iout(2) = iif (feature number).

Set iout(4) = ifno (the number of outlines).

Set iout(6) = isf (subfeature number).

DWGTAPE

WRITTEN 23NOV76 BALCERAK

SOURCE=<DWGTAPE:F>
OBJECT=<DWGTAPE:R>

72.

73.

74.

75.

76.

1.

78.

79.

80.

81.

82.

83.

&4.
85.

Set iout(8) = isfno (number of points).

Set iout(10) = not (second subfeature number).

Set jout(12) = nor (State number).

Set iout(14) = nif (graticule identifier).

Set iout(16) = ispan (span).

If ispan is less than 0, set iout(15) = ineg (makes
the whole word negative.

Call wrtape to write the header card to the tape.

If istat (error code) not = 0, go to step 84.

Otherwise, go to step 47.

Add 1 to knum (counter for next position).

Set xp(knum) = x1; set yp(knum) = y1.

If knum is less than 6, go to step 47.

Otherwise, go to the next step. The card should
have six points to be punched.

If knum = 0, go to step 80. Then, the last card
punched had six points on it and finished an
outline.

Setm = —1;set! = -3 (to start counters used later
at the proper place in the arrays).

Do steps 78-79 for i = 1, 12, 2.

Add 4 to 1.

Set jout(l) = itemp(i).

Set iout(! + 1) = itemp(i + 1).

Add 4 to m.

Set iout(m) = jtemp(i).

Set jout(m + 1) = jtemp(i + 1).

Call wrtape to write a data card to the tape.

If jstat (error code) not = (, go to step 34.

If key = 31 (EOF), go to step 85. Program is almost
finished.

If key = 8 (text position), go to step 44. A new
outline is to be processed; default values must be
reset.

Set knum = 1.

Go to step 45. More points are in this outline.

Write message to terminal:

NO TEXT IN FILE!!

Go to step 85.

Write jstat (error code) to the terminal.

Write message to terminal:

IDONE!

Call wreof to write EOF on tape.

Set kp = 0.

Call save(2) (restores critical constants).

Call ovrly (overlays user memory with selected main
program). Here it returns control to table.

Call exit2 (overlays signoff for the system).

[eNeoNeoNoNeoNeoNoNoNeoNoNeoNoNeoNeoNe!

(@]

APPENDIX C 121

PURPOSE:
TO READ A SYSTEM 101 DRAWING FILE LOADED ON
THE DRAW.NG TABLE-GET THE X,Y COORDINATES
OF THE TEXT REFERENCES AND OF THE LINES
AND WRITE TO TAPE IN 12F6.3 FORMAT.
OPTIONS INCLUDE WRITING ALL OR ONLY ONE OF
THE SUBFILES. ALSO, ONLY THE FIRST DATA
CARD CAN BE WRITTEN OUT INSTEAD OF ALL.

THE HEADER CARD FOR EACH OUTLINE WILL ALSO
BE WRITTEN WITH ALL RELAVENT INFORMATION.

COMMON /BLK/ X(30),Y(30),A(10),K(30),KP,ID(80)

COMMON /PNTR/ KPT(3,2)

COMMON /LINBF/ LTYPE,LWIDE

COMMON /MENUl/ KODE,MRFLG,SFACT,LNMOD,LNWID

COMMON /EXEC/ IEXEC(64),REXEC(64)

COMMON /DSKBF/ IDUM(3),LENG

COMMON /IDENT/ IDA(3)

COMMON /PUNCH/ XP(6),YP(6),IBUF(5), IBURP(1000), IFNUM, IANSWER,
$ IIFNO(1500),INEG,IZERO

COMMON /UNIT/ MTUNIT

DIMENSION ITEMP(12),JTEMP(12)

EXTERNAL MT80

EQUIVALENCE (K(1l),Kl)
EQUIVALENCE (K(2),K2)
EQUIVALENCE (K(4),KF)
EQUIVALENCE (K(11),KEY)
EQUIVALENCE (K(12),ISUBF)
EQUIVALENCE (K(15),NCHAR)
EQUIVALENCE (X(1),X1)
EQUIVALENCE (Y(1l),Y1l)
EQUIVALENCE (IEXEC(19),LNMSV)
EQUIVALENCE (IEXEC(20),LNWSV)
EQUIVALENCE (XP(1),ITEMP(1))
EQUIVALENCE (YP(1l),JTEMP(1l))

DATA INEG /177777K/
DATA IZERO /000000K/

CALL XIOIT(MT80)

CALL SAVE(1)

CALL NUMIN("|TAPE UNIT NO. (0 OR 1)",TEMP)
MTUNIT=TEMP

PAUSE MOUNT TAPE PLEASE

CALL NUMIN ("|SUBFILE # =, TYPE 9999 FOR ALL",TEMP)

122

2
3
4
5
6
C
C
7
8
9
11
c
12
C
c
C\
C
c
10
20

GEOINDEX

IFNUM=IFIX(TEMP)

CALL MSGOT ("|DO YOU WISH THE FIRST DATA CARD ONLY??")
CALL YESNO (IANSWER)

NIF=0

CALL NUMIN ("|TY E 2 DIGET STATE NUMBER ",TEMP)
NOR=TEMP

CALL MSGOT ("|IS THIS THE GRID BEING PUNCHED?? ")
CALL YESNO (ISTAT)

GO TO (2,3),ISTAT

NIF=991

GO TO 5

CALL MSGOT ("|IS THIS THE COUNTIES BEING PUNCHED?? ")
CALL YESNO (ISTAT)

GO TO (4,5),ISTAT

NIF=992

DO 6 I=1,1500

IIFNO(I)=0

CONTINUE

CALL MSGOT (" SKIP FILES?? ")

CALL YESNO (IT)

GO TO (7,12),IT

CALL NUMIN(" HOW MANY FILES?? ",TEMP)
ISKIP=TEMP

IF (ISKIP) 7,12,8

DO 11 I=1,ISKIP

CALL RDTAPE (MTUNIT,IBURP,1000,0,JACNT,JSTAT)
IF (JSTAT .EQ. 4) GO TO 11

IF (JSTAT .NE. 0) GO TO 12

GO TO 9

CONTINUE

CONTINUE

KPT (KF,1)=1
START READING RECORDS AND PUNCHING OUT CARDS
KP=1

CALL RWCON (KF,1)
IF (KEY .EQ. 31) GO TO 350

IF ((ISUBF .NE. IFNUM) .AND. (IFNUM .NE. 9999)) GO TO 10

IF (KEY .NE. 8) GO TO 10
KOUNT=1

INUM=1

IIFNO (ISUBF)=1

KP=1

CALL RWCON (KF,1)

IF (KEY .EQ. 31) GO TO 30

IF ((ISUBF .NE. IFNUM) .AND. (IFNUM .NE. 9999)) GO TO 20

IF (KEY .EQ. 8) GO TO 30
IF ((KEY .EQ. 1) .OR. (KEY .EQ. 6) .OR. (KEY .EQ. 7)

)

30

40

50

55

60

65

70

80

APPENDIX C

* KOUNT=KOUNT+1
Go TO 20

IBURP (INUM)=KOUNT

KOUNT=1

INUM=INUM+1

IF (KEY .EQ. 31) GO TO 40
ITFNO(ISUBF)=IIFNO(ISUBF)+1
GO To 20

KPT (KF,1)=1
INUM=1

KP=1

CALL RWCON (KF,1)

IF (KEY .EQ. 31) GO TO 500
IF ((ISUBF .NE. IFNUM) .AND.
IF (KEY .NE. 8) GO TO 50
KOUNT=0

KNUM=2

IIF=ISUBF

IFNO=IIFNO (ISUBF)
ISFNO=IBURP (INUM)
INUM=INUM+1

ISF=1

IUP=1

NOT=0

ISPAN=0

XP(1)=X1

YP(1)=Y1

DO 65 I=KNUM,6

XP(I1)=0.

YP(I)=0.

CONTINUE

IF (KNUM .EQ. 1) KNUM=0

KP=1

CALL RWCON (KF,1)

IF (KEY .EQ. 31) GO TO 140
IF ((ISUBF .NE. IFNUM) .AND.
IF (KEY .EQ. 8) GO TO 140
IF (KEY .EQ. 16) GO TO 80

(IFNUM

(IFNUM

IF ((KEY .EQ. 1) .OR. (KEY .EQ. 7)

IF (KEY .EQ. 6) GO TO 130
GO TO 70

KOUNT=KOUNT+1

IF ((KOUNT .EQ. 1) .OR. (KOUNT .GT.

DO 85 I=1,5

«NE.

.NE.

) GO TO 110

4))

9999))

9999))

GO TO 70

Go TO 50

GO TO 70

123

124

eNeoNe]

(Wi

85

90

95

100

110

120

130

140

150
160

350

500

GEOINDEX
IBUF(1)=ID(I)

CALL ASFLC (IBUF,NCHAR,TEMP,ISTAT)

IF (ISTAT .EQ. 1) GO TO 70
IF (NIF .EQ. 992) GO TO 90

IF((IFNO .EQ. 1) .AND. (TEMP .GT.
IF ((IFNO .EQ. 1) .AND. (TEMP .LT.

I=KOUNT-1

GO TO (90,95,100),1
ISF=TEMP

GO TO 70

ISPAN=TEMP

GO TO 70

NOT=TEMP

GO TO 70

IF ((KEY .EQ. 1) .AND. (IUP .GT.

IUP=IUP+1
XP(2)=X1
YP(2)=Y1

0.0))
0.0))

1)) GO

KOUNT=4
KOUNT=3

TO 130

WRITE(22,120)I1IF,IFNO,ISF,ISFNO,NOT,NOR,NIF,ISPAN

FORMAT (1X,815)
GO TO 70

KNUM=KNUM+1

XP (KNUM)=X1

YP (KNUM)=Y1

IF (KNUM .LT. 6) GO TO 70

IF (KNUM .EQ. 0) GO TO 160
WRITE(22,150) (XP(I),YP(I),I=1,6)
FORMAT (1X,12F6.3)

IF (KEY .EQ. 31) GO TO 500

IF (KEY .EQ. 8) GO TO 55

IF (IANSWER .EQ. 1) GO TO 50
KNUM=1

GO TO 60

DONE
CALL FCNOT ("|NO TEXT IN FILE|")

CALL FCNOT (" |DONE|™)
CALL WREOF (MTUNIT,JSTAT)
KP=0

CALL SAVE(2)

CALL OVRLY (1,IER)

CALL EXIT2

END

APPENDIX C

EXEC_COM NAME: VERSATEC.EC

Awuthor: James Fisher

Purpose of the program: versatec.ec, written in Multics
command language, reads the tape that was created
on the Data General minicomputer and creates the
Versatec border, grid, State, county, and coordinate
files. If there is more than one coordinate file, the files
must be combined on Multics by means of an editor,
and then sort.vers.coor.ec must be run.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system.: Multics

Calling sequence: ec versatec mnmnnnn nof filel . ..
filen

Arguments:
nnunnnn— Volume number of the tape
nof—Number of files to be copied to disk
filel . .. filen— Name of the files when copied to disk

Subroutines called: None

Common data referenced: None

Input files: User’s tape

Output files: Files copied to disk

Arrays used: None

Called by: None

Error checking and reporting: None

Constants: None

versatec.ec

use: ec versatec.ec tape no

function:

county,
coordinate file,

RO RODDRDORRRR

&command_line off

&input_line off

&

value$set_seg value_seg

value$set file_names [string &£f3]

no of files

125

Program logic:

1. To execute this exec__com, the operator must type:
ec versatec.ec, tape number, number of files, segl
seg2 . . . segN where segl, seg2, .. ., segN are the
file names that are to be created. segi, seg?, . . .,
segN must not exceed a total of 32 characters
because of the value command used extensively in
this exec_com. The value command returns a
character string associated with a named item in a
user symbol table segment. This enables ad-
ministrative exec_com segments to reference
variables.

2. The exec_com uses the tape_ibm command with
density 800, record size 80, and ASCII character
mode.

3. The first file is read from tape and written to disk
under the name given by seg1.

4. The number of file parameters is then checked
against the number of files that have been written.
When they are not equal, the next file is attached
by the I/0 command.

5. After the segment is attached, copy_file is used to
write the segment to disk.

6. This process continues until the number of file
parameters is equal to the number of files that have
been written.

7. When the parameters are equal, the tape is renamed
and the execution of the exec__com is ended.

AR EEEEEEEEEEEEEEEE SR ERER SRS SRR R R R LR

khkkhkhkhkhkhkhkhkhkhhhhhkkhhkhhRhhhhhhhhhkhhhkhhhkhhhhhhhhhhhhkhhhhohhhhhhdk

segl seg2....5egn

where segl seg2....segn must not exceed a total of 32 char

This ec reads the tape that was created on the Bendix
minicomputer and creates the Versatec border,
and coordinate files.
they must be combined on Multics and then
sort.vers.coor.ec must be run.

grid, state,
If there is more than one

126

value$set this_file name &3
value$set increment O
value$set tape_file_no 1
&if
&else value$set all_or_none all
&

&label copy

io attach input tape_ibm_ &1 -nlbd -nb

GEOINDEX

[equal &2 1] &then value$set all_or_none none

[value tape_file_no] -den 800 -f

\cmt fb -rec 80 -~bk 80 -mode ascii ~retain [value all_or_none]

io attach output record_stream_ ~target vfile_

copy_file -isw input -osw output
io detach (input output)

&

&if [equal [value tape_file_no]
value$set tape_file_no [plus
&if [equal

\c] [value increment] 2]
value$set remnant [string [substr
\ctart_of_next_file_namel]]

&21
[value tape_file_no] 1]

[value tape_file _no] &2] &then value$set all_or_none none
value$set start_of next_file name [plus

[string

[value this_file_name]

&then &goto quit

[length [value this_file_name]

[value file_names]] [value s

value®set nxtblnk [search [string [value remnant]] " "]

&1if [equal
\¢c [value remnant]]

&else value$set next_file_ length
value$set next_file name [substr
\cxt_file_lengthl]]
value$set increment
\came]] 1]

[plus

[value nxtblnk] 0] &then value$set next_file_length

[minus
[string

[value increment]

[length

[value nxtblnk] 1]

[value remnant]] 1 [value ne

[length [value this_file_n

value$set this_file _name [value next_file_name]

&goto copy

&

&label quit
truncate value_seg
&quit

PROGRAM NAME: INDEX_VERSATEC

Awuthor: Lawrence Balcerak

Purpose of the program: index_versatec plots index
maps using the Versatec plotter.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: index__versatec

Arguments: None

Subroutines called: io_call, ioa_$nnl, setup_ver-
saplot (Multics software), plots, plot, newpen, let-
ter, factor (Versaplot software), openf, rotate,
legend, pattern, rdftur, srtdup, pltsel, closef

Common data referenced: size, end, istate, scale,
Iparaml, in1, ipen, kpen, Iword/

Input files: bordNM (file10), gridNM (file11), statNM
(file12), counNM (file13), coorNM (file14), pverNM
(file15)

Output files: Versatec plot

Arrays used: input 4(6) (used to read the six input files)

Called by: None

Error checking and reporting: None

Constants: in = 15, rsiz = 0.14, ipen = 4, rrsiz = 0.04,
kpen =1

Program logic:

1. Set fmt2 = (6h(a4,2h,i2,1h)). This is used to put the
State number into fmt1. The format is those
characters between the outermost parentheses.

2. Attach to the file init_vals. This file contains those
changes to the default parameters to the Ver-
saplot software needed for this plot. The file con-
tains xmas = 50.0, which should be adequate for
most of our plotting.

3. Send message to terminal:

TYPE IN TWO DIGIT STATE NUMBER
and read istate.

10.
11.

12.

13.

0O o000 00

APPENDIX C 127
If istate is less than 10, then fmt2 14. Plot the five text strings in iwords(i). The letter
=(6h(a4,2h,1h0,i1,1h)). subroutine is the one presently used. The dot
Do step 5 for / = 10, 15. width for letters is set at 4 except for the date,
Concatenate the State number to input(/) and place where it is 3.
into name. Call openf with junit = i, name = | 15. Read the parameter plotting values into inparm.
name, mode = “si”. 16. If inparm(1) is not equal to 1, go to next step. A
Call setup__versaplot. This activates the Versaplot value of 1 indicates that the neat outline is to be
software. plotted. A value of 0 indicates do not plot.
Call plots (0,0,0). This initializes the default Set in1 = 10, which is the reference number for the
parameters. If init_vals is attached, it reads this neat outline.
file and makes those changes. Call rdftur.
Setint = 10. This is the reference number for bord- Rewind in1.
NM. 17. Repeat step 16 with inparm(23) and in1 = 11 (grid).
Set size = 17.99, which is the width of the plotting Go to step 18 if no plot.
paper. 18. Repeat step 16 with inparm(45) and in1 = 12
Call rotate. (State).
Print value of scale. Go to step 19 if no plot.
Call legend. 19. Repeat step 16 with inparm(67) and in1 = 13 (coun-
Call pattern. ties).
If deltay is less than 0.001, go to step 10. A value Go to step 20 if no plot.
greater than 0.001 indicates that the plot is to be | 20. Repeat step 16 with inparm(117) and in1 = 14
rotated and translated. (coordinates outlines).
Transform xsym, ysym, xlet, and ylet. Go to step 21 if no plot.
Call factor. Reset the scale to the value of scale. Otherwise, go to step 22 after this is plotted.
Read inum(5) and iwords(5) from pverNM. 21. If inparm(89) is not equal 1, go to next step.
Set iangle = 0. Set in1 = 14.
Find the starting x-values (xsym and x/et) for the Call srtdup(in).
text string iword(5). The values for the use of both Read in cards with the selected outlines, sort them
text plotting subroutines (symbol and letter) are in ascending order, and remove duplications.
given. The visible difference in determining which Call tsel(inparm(89)).
one to use is in the fonts for their letters. Plot the selected outlines.
If deltay is less than 0.001, go to step 13. Rewind in1.
Transform xsym, ysym, and x/et, ylet. 22. Call plot(0.,0.,999) (end of plot).
Set iangle = 270. Send message to terminal:
Call plot (2.0,0.005, - 3). This changes the software FINISH PLOT
origin. Trying to plot ¥y = 0 or x = 0 when the | 23. If inparm(133) is equal to 1, go to step 10.
hardware origin is in effect has presented prob- Otherwise go to step 24.
lems in the past. Also, at times the upper left x | 24. Call plot(0.,0.,-999).
value is negative. End all plotting.
Go to step 14. 25. Call setup_versaplot(‘“-reset’”) (removes links to
Call plot (2.0, 1.18, -3). Changes the origin to allow Versatec software).
negative y values, which are needed to plot the Call closef(i) for i = 10, 15 (closes and detaches all
legends at the bottom. files).
PROGRAM - INDEX_VERSATEC

PLOT LAND USE 1ID°'S

L.L.

Uu. S.

BALCERAK
GEOLOGICAL SURVEY

common /rot/ sizesendsxmaxsymaxsistate
common /param/ scalesdeltaysrsizorrsiz

common /aex/

ifsoifnosisferisfnosrnotsnorsnifr,ispansinils,ipenskpen

128

10

20

40
50

60

GEOINDEX

common /word/ xsym(S5),ysym(5),inum(5),numsta(72).,
gxlet(S),ylet(5),iscale(S5S),height(5)

character input*4(6),fmt1*10,fmt2*21,name*6,iwords*53(5)

dimension inparm(133)

external io_call (descriptors),ioa_$nnl (descriptors).,

8setup_versaplot (descriptors)sletter (descriptors)

data input /"bord".,"grid","stat”,"coun”,"coor”,"pver"/

in=15

ipen=4

kpen=1

rsiz=0.14

rrsi1z2=0.04

fmt2="(6h(ab,2h,i2,1h))"

call 1o_call ("attach","init_vals","vfile_"»"init_vals")
call ioa_%nnl ("“/TYPE IN TWO-DIGIT STATE NUMBER: ")
read 10, istate

format (i2)

if (istate Jlt. 10) fmt2="(6h(as,2h,1h0,i1,1h))"

do 20 i=10,15

encode (fmtl1,fmt2) istate

encode (name,fmt1) input(i-9)

call openf (i,name,”si ')

continue

call setup_versaplot

SET ORIGIN ON PLOTTER

call plots (U.,0,0)
in1=10

size=17.99

call rotate

print »,"scale=",scale
call legend (iwords)
call pattern

if (deltay .lt. .001) go to 50
do 40 i=1,¢4
temp=xsym(i)
xsym(id)=ysym(i)
ysym(i)=deltay-temp
temp=xlet (i)
xltet(id=ylet (i)
ytet(i)=del tay-temp
continue

call factor (scale)

BORDER INFORMATION

read (in,60,end=180) inum(S),iwords(5)

format (i2,a53)

iangle=0

xsym(5)=(xmax=inum(5)*x(height(5)+0.,019))/2.
xlet(5)=(xmax=inum(5)*x(iscale(5)*(0.0625-0.0029)))/2.
if (deltay .lt. .007) go to 70

iangle=270

APPENDIX C 129

ysym(S5)=deltay=-xsym(5)
ylet(5)=del tay-xlet(5)
xsym(5)=-0,61
xlet(5)=~-0,61

catl plot (2.0,0.005,-3)

go to 84U
70 call plot (2.0,1.18,-3)
30 do 90 i=1,5

=4

if (i .eg. 4) j=3

call newpen (j)

call letter (inum(idsiscale(id)s,ianglesxlet(id,ylet(i)siwords(i))
90 continue

c
c READ INPUT INFORMATION
c
read (in,100,end=170) inparm
1030 format (66i1/6711)
c
c CHECK FOR PLOT OR NO PLOT
c ON EACH ITEM
c
c NEAT OUTLINE
c
if (inparm(1) .ne. 1) go to 110
in1=10
call rdftur (inparm(1))
rewind ini
c
c GRID
c
110 if (inparm(23) .ne. 1) go to 120
in1=11
call rdftur (inparm(23))
rewind in1l
c
c STATE
c
120 if (inparm(45) .ne. 1) go to 130
int=12
call rdftur (inparm(45))
rewind inl
c
c COUNTIES
c
130 if C(inparm(67) .ne. 1) go to 140
in1=13
call rdftur C(inparm(67))
rewind inl
c
C ALL FEATURES
c
140 if (inparm(111) .ne. 1) go to 150

in1=14
call rdftur (inparm(111))

go to 170

CHECK IF SOMETHING ELSE IS TO BE PLOTTED

go to 50

130 GEOINDEX
rewind inl
go to 170

c

c SELECTED FEATURES

c

150 if (inparm(89) .ne. 1)
in1=14
call srtdup (in)

160 call pltsel (inparm(89))
rewind inl

c

c

c

170 call plot (0.,0.,999)
print ,"finish plot”
if (inparm(133) .,eq. 1)

180 call plot (J.r0.,-999)
call setup_versaplot ("-reset”)
do 190 i=10,15
call closef (i)

190 continue
stop
end

SUBROUTINE NAME: LEGEND

Author: Lawrence Balcerak

Purpose of the program: legend initializes text strings
and beginning text positions for the index maps.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system. Multics

Calling sequence: call legend (iwords)

Arguments: iwords—Five text strings containing the
legends to be placed on the index maps

Subroutines called: None

Common data referenced: xmax, ymax, istate, xsym,
ysym, inum, numsta, xlet, ylet, iscale, height

Input files: None

Output files: None

Arrays used:
iwords53(5)
nstate20(72)— Array in which to read the States

Called by: index__versatec, index_calcomp

Error checking and reporting: None

Constants: None

subroutine legend (iwords)

Program logic:

1. Set numsta(i) = the number of letters in the State
name, where i represents the FIPS code.

Set iwords(1) and iwords(2)

Set nstate(i) = State names

Set iwords(3) = nstate(istate)

2. Find year date.

Set iwords(4) = year date.

3. Set other variables: inum is the count of letters for
each iword; height is the height of letters if using
symbol to plot the legends; iscale is the height of
letters if using subroutine letter to plot the
legends; xsym, ysym are the starting x, y coor-
dinates if using symbol; x/et, ylet are the starting
x, y coordinates if using letter.

Note: There are factors of 0.019 and -0.0029 for
computing xsym and x/et. The factor for using
symbol is to take into account the slight widening
of the letter where line width is greater than 1.
Where letter is used, the supposed width of a letter
is slightly reduced, but no explanation is given in
the manual.

common /rot/ sizerendsxmaxsymaxsistate
common /word/ xsym(S),ysym(5),inum(5),numsta(72),
& =xlet(S),ylet(S5)siscale(5),height(5)

character

iwords*53(5),nstatex20(72),idt*b6,year*4

iwords(1)="UNITED STATES GEOLOGICAL SURVEY"
iwords(2)="DEPARTMENT OF THE INTERIOR"

APPENDIX C
nstate(1) ="ALABAMA"
nstate(2) ="ALASKA"
nstate(4) ="ARIZONA"
nstate(5) ="ARKANSAS"
nstate(6) ="CALIFORNIA"
nstate(7) ="CANAL ZONE"
nstate(3) ="COLORADO"
nstate(9) ="CONNECTICUT"

nstate(10)="DELAWARE"
nstate(11)="DISTRICT OF COLUMBIA"
nstate(12)="FLORIDA"
nstate(13)="GEORGIA"

nstate(15)="HAWAIL"
nstate(16)="IDAHO"
nstate(17)="ILLINOIS"
nstate(18)="INDIANA"
nstate(19)="I10WA"
nstate(20)="KANSAS"
nstate(21)="KENTUCKY"
nstate(22)="LOUISIANA"
nstate(23)="MAINE"
nstate(24)="MARYLAND"
nstate(25)="MASSACHUSETTS"
nstate(26)="MICHIGAN"
nstate(27)="MINNESOTA"
nstate(28)="MISSISSIPPI"
nstate(29)="MISSOQURI"
nstate(30)="MONTANA"
nstate(31)="NEBRASKA"
nstate(32)="NEVADA"
nstate(33)="NEW HAMPSHIRE"
nstate(34)="NEW JERSEY"
nstate(35)="NEW MEXICO"
nstate(36)="NEW YORK"
nstate(37)="NORTH CAROLINA"
nstate(33)="NORTH DAKOTA"
nstate(39)="0HIO"
nstate(4U0)="0KLAHOMA"
nstate(41)="0REGON"
nstate(42)="PENNSYLVANIA"

nstate(44)="RHODE ISLAND"
nstate(45)="SOUTH CAROLINA"
nstate(46)="SOUTH DAKOQOTA"
nstate(47)="TENNESSEE"
nstate(48)="TEXAS"
nstate(49)s"UTAH"
nstate(S0)="VERMONT"
nstate(51)="VIRGINIA"
nstate(52)="VIRGIN ISLANDS"
nstate(53)="WASHINGTON"
nstate(S54)="WEST VIRGINIA"
nstate(S5S5)="WISCONSIN"
nstate(56)="WYOMING"

131

132

30

GEOINDEX

nstate(60)="AMERICAN SAMOA"
nstate(66)="GUAM"
nstate(72)="PUERTO RICO"

iwords(3)=nstate(istate)
call plil_date_ (idt)
decode (idt,10) year
format (a2d)

encode (iwords(4),20) year
format (2h19,a2)

inum(1)=31

inum(2)=26
inum(3)=numsta(istate)
inum(4)=4

neight(1)=0,18
height(2)=0.18
height(3)=0,18
height(4)=0,14
height(5)=0.28

iscale(1)=3
iscale(2)=3
iscale(3)=3
iscale(4)=3
iscale(5)=5

xsym(1)=0.25

ysym(1)=ymax+0.35

xsym(2)=0.25

ysym(2)=ymax+0.68
xsym(3)=xmax=inum(3)+x(height(3)+0.019)-0.25
ysym(3)=ymax+0,68
xsym(4)=(xmax=-inum(4)*(height(4)+0.019))/2.
ysym(4)=-1,17

ysym(5)=-0.61

do 30 i=1,5

ylet(id=ysym(1i)

continue

xlet(1)=xsym(1)

xlet(2)=xsym(2)
xlet(3)=xmax-inum(3)*(iscale(3)*(0,0625-0.0029))>-0.25
xlet(4)=(xmax-inum(4)*(iscale(4)*x(0.0625-0.0029)))/2.
return

end

block data
common /word/ xsym(5),ysym(5),inum{(5),numsta(72),
& xlet(5),ylet(5),iscale(5),height(5)

APPENDIX C
8,110,110,

6s Us 7,
7, 7, 0.,
9.,

data numsta [/ 7.

& 20,
’ 5,
8,
6,12,
8, 0,1U,13,
0, 0, O, 0.

< @ X @

end

6,

S, 8,13,
6,13,10,10,
0,12,14,12,

9.,
0.

133

8,11,
Se 8+ T+ 4y,
8, 9,11, 8.,
8,114,712, 4+ 8,
9¢ S, 4, 7,
7, 0, 0, 0ri4,
4, 0, 0, O, O»

8,
6.
7.

0,11/

SUBROUTINE NAME: ROTATE

Awuthor: Lawrence Balcerak

Purpose of the program.: rotate checks bordNM to see if
it will fit on plotting paper at full scale. If not, it com-
putes a scale that produces the largest possible plot on
the paper. The finished plot can be upright or rotated
on its side.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call rotate

Arguments: None

Subroutines called: None

Common data referenced: size, end, xmax, ymax,
scale, deltay, int

Input files: bordNM

Output files: None

Arrays used:
X(6)—x coordinate
y(6)—vy coordinate

Called by: index__versatec, index_calcomp

Error checking and reporting: None

Constants: None

Program logic:

1. Reads the header card (does not use).
2. Reads data points (always six points).

subroutine rotate

10.

. Finds maximum z value and y value and stores in

xmax and ymax.

. Set parameters (assume upright at full scale): end =

xmax + 8.0. In Calcomp plotting, this is the
amount to move in z to start a new plot; scale =
1.0; deltay = 0.0. If plot is rotated, de/tay is the
amount of translation needed to bring plot back to
plotting frame.

. If ymax plus amount needed for legends at top and

bottom is less than size (width of paper), go to
step 10 (plot fits on paper).

If xmax is greater than size, go to step 8 (rotated
plot too big to fit).

. Rotated plot will fit at full scale.

Set deltay = xmax
Set end = ymax + 8.0
Go to step 10.

. Plot must be scaled. If plot would be larger rotated

on side, go to step 9. Otherwise, compute scale in
upright position.

Go to step 10.

Compute scale in rotated position.

Set deltay = xmax

Set end = ymax + 8.0

Rewind data file.

Return to calling program.

common /rot/ sizersends,xmaxsymaxsistate
common /param/ scalerdeltaysrsizorrsiz

common /dex/
dimension x(6),y(6)

ifroifnosisfeisfnoenotsenorsnifrispansinit,ipenskpen

read (in1,10) if
10 format (i5)

read (in1,20) (x(id,y(i),i=1,6)
20 format (12t06.3)

xmax=x(2)

ymax=y(2)

do 30 1=3,6

if (x(3) .gt. xmax) xmax=x(i)

if (y(i) .gt. ymax) ymax=y(i)
30 continue

134

end=xmax+8.0

scale=1.0

deltay=0.0

if ((ymax + 2.05) .le.
if (xmax .gt. size)
deltaysxmax
end=ymax+8.0

go to 60
if (xmax

40 .lt.

size)
go to 40

(ymax+2.05))

GEOINDEX

go to ou

go to 50

scale=size/{(ymax+2.05)-0.01

go to 60
scale=size/xmax-0.,01
deltay=xmax
end=ymax+8,.0

rewind in1

return

end

50

60

SUBROUTINE NAME: RDFTUR

Awuthor: Lawrence Balcerak

Purpose of the program: rdftur reads a header card from
the file being plotted and branches to the designated
plotting subroutine.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call rdftur (infom)

Arguments: infom — Array of 22 elements with plotting
parameters for the file being read

Subroutines called: plotch, plotli, pllich

Common data referenced: if, ifno, isf, isfno, not, nor,
nif, in1

Input files: gridNM, statNM, counNM, coorNM

Output files: None
Arrays used: infom—Elements with plotting param-
eters for the file being read
Called by: index__versatec, index__calcomp
Error checking and reporting: None
Constants: None
Program logic:
1. infom(2) can have values of 0, 1, or 2 (see plotting
parameter cards).
Add 1 and store in item.
2. Read a header card from file in7.
If EOF, return to calling program.
3. Call subroutine, which will plot according to the
parameter stored in infom(2).
4. After return from plotting subroutine, go to step 2.

subroutine rdftur (infom)
c
c DETERMINE WHAT IS TO BE PLOTTED FOR
c THeE SPECIFIED FEATURE
c
common /dex/ ifsifnorisfrisfnosnotenor.nif,ispansinisipenskpen
dimension infom(22)
item=infom(2)+1
c
c READ A FEATURE CARD
c
5 read (in1,10,end=80) ifr,ifnosisfreisfnornotenore,nifr,ispan
10 format (8i5)
go to (40,30.,20).,7tem
c
[CHARACTERS PLOTTED ONLY
c
20 call plotch (infom)

go to 5

APPENDIX C 135

c
o LINES PLOTTED ONLY
c
30 call plotti (infom)

go to S
C
(o 80TH PLOTTED
c
40 call pllich (infom)

go to 5
80 return

end

SUBROUTINE NAME: PENCHG

Author: Lawrence Balcerak

Purpose of the program: penchg changes pen numbers
(Calcomp) or line widths (Versatec) in a sequence
predetermined by the plotting parameters.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call penchg (infom,ipen)

Arguments:
infom—Array of 22 elements with plotting

parameters for the file being read

ipen —Counter for member of infom to examine

Subroutines called: newpen (Versaplot and Calcomp
software)

Common data referenced: None
Input files: None
Output files: None
Arrays wused: infom(22)—Elements with plotting
parameters for the file being read
Called by: plotch, plotli, pllich
Error checking and reporting: None
Constants: None
Program logic:
1. Set k = infom(ipen). k equals pen number (Calcomp)
or line width (Versatec).
2. Call newpen(k)
3. Add 1 to ipen.
If ipen is equal to 13, set ipen = 4.
Or, if infom(ipen) = 0, set ipen = 4.
4. Return.

subroutine penchyg (infom,ipen)

c change pens

dimension infom(22)
k=infom(ipen)

call newpen(k)
ipen=ipen+]

if (ipen .eg. 13) ipen=4
if (infom(ipen) .eqg. 0)
return

end

ipen=4

SUBROUTINE NAME: PLOTLI

Awuthor: Lawrence Balcerak

Purpose of the program: plotli plots a coordinate outline
without accompanying text.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call plotli (infom)

Arguments: infom — Array of 22 elements with plotting
parameters for the file being read

Subroutines called: plot, symbol (Versaplot), penchg
Common data referenced: deltay, rsiz, isfno, in1, ipen
Input files: gridNM, statNM, counNM, coorNM
Output files: None
Arrays used:

xx(6)—x coordinate,

yy(6)—y coordinate

infom(22)—Elements with plotting parameters for

the file being read

Called by: rdftur, pltsel

136 GEOINDEX
Error checking and reporting: None
Constants: None 6
Program logic:

1. Call penchg.

2. Set ie = minimum of (6,isfno). 7.

3.

4.

(2}

20

Read the first coordinate data card into xx(7), yy(i).

Set ang = 0.

If deltay is less then 0.001, go to step 4. A value
greater than 0.001 indicates that the plot is to be
rotated.

Rotate and translate the data points.
Set ang = 270.0.

If isfno is greater than 2, go to step 6.

Otherwise, plot a centered symbol (#2) scaled to 1.5
times the character height rsiz.

subroutine plotli

PLOT LINES ONLY

(infom)

10.

11.

Return.

. Go to the first data point of outline with pen up.

Set k = 2. This is the position in xx, yy at which to
start plotting. The first point is the text position.
Plot points k to ie with pen down.

. Subtract 6 from isfno.

If isfno is greater then 0 (there are more points to
plot), go to step 9.

Otherwise return.

Set je = minimum of (6,isfno).

Read another data card into xx, yy.

If deltay is less then 0.001, go to step 11.

Otherwise, rotate and translate xx, yy.

Set k = 1.

Go to step 7.

common /param/ scale,deltays,rsiz,rrsiz

common /dex/

ifroifnosisfrisfnosnotsnorenifrispansini,ipenskpen

dimension infom(22),xx(6),yy(6)

CHANGE PENS

call penchg (infom,ipen)

READ THE FIRST COORDINATE CARD

1e=isfno

if (isfno .gt. 6) 1ie=6
read (in1,20,end=130)
format (12f6.3)
ang=0.0

if (deltay .lt.
do 30 i=1,ie
temp=xx(1i)
xx(i)=yy (i)
yy(i)=deltay-temp
continue
ang=270.0

.001)

CHECK FOR A SINGLE POINT

if (isfno .ge. 3) go to 50
call symbol
go to 13d
PLOT LINES
call plot (xx(2),yy(2),3)

k=2

(xx(i)oryy(id),i=1,1ie)

go to 40

(xx(2),yy(2)s1.5*rsi2,2sangr,=1)

APPENDIX C 137
60 do 70 i=ke,ie
call plot (xx(i)seyy(i),2)
70 continue
c
c CHECK FOR MORE COORDINATES
c
isfno=isfno-6
if (isfno) 130,130.,80
80 if (isfno -6) 90,920,100
90 iezisfno
100 read (in1,20,end=130) (xx(Ci)eyy(idoi=lsie)
if (deltay .lt. .001) go to 120
do 110 i=1.1e
temp=xx(i)
xx{id)=yy (i)
yy(i)=deltay—-temp
110 continue
120 k=1
go to 60
130 return
end

SUBROUTINE NAME: PLLICH

Author: Lawrence Balcerak
Purpose of the program: pllich plots both the feature
number and outline from a coordinate file.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call pllich (infom).
Arguments: infom — Array of 22 elements with plotting
parameters for the file being read
Subroutines called: number, symbol, plot (Versaplot),
penchg, shade
Common data referenced: deltay, rsiz, rrsiz, /dex/
Input files: gridNM, statNM, counNM, coorNM
Output files: None
Arrays used:
xx(6)—x coordinate
yy(6)—y coordinate
infom(22)-Elements with plotting parameters for
the file being used
Called by: rdftur, pltsel
Error checking and reporting: None
Constants: None
Program logic:
1. Call penchg.
2. Set ie = minimum of (6,isfno).
3. Read the first data card.
Set ang = 0.
4. 1f deltay is less than 0.001, go to step 5. A value of
deltay greater than 0.001 indicates that the plot is
to be rotated.

10.

11.

Rotate and translate xx, yy.

Set ang = 270.0.

If kpen is greater then 0, call newpen(3). kpen
serves a dual function. For Calcomp plots, it has a
value of -1. For Versatec plots, it has a value
greater than 0. Also, in Versatec plots it serves as
a counter for the number of the pattern last used.

Set ff = if.

Call number to plot the feature number.

If the subfeature number is not to be plotted, go to
next step.

The subfeature numbers are not to be plotted on the
Versatec plots, so if kpen is greater then 0, go to
the next step.

Set ff = isf. The starting coordinate for the
subfeature number must be offset to place it
directly under the feature number.

If the plot is not rotated, subtract the letter size
rsiz and a small amount for a gap between lines
rrsiz from yy.

If the plot is rotated, subtract rsiz and rrsiz from xx.

Call number.

Repeat previous step for the span.

Repeat previous step for the second subfeature
number.

If isfno is greater then 2, go to step 11.

Otherwise, plot a centered symbol (#2) scaled to 1.5
times the character height rsiz.

Return.

If this is the coordinate outline file being read (in =
14) and this is a Versatec plot (kpen greater than
0), go to step 12.

138 GEOINDEX

Otherwise, go to step 13. If isfno is greater than 0 (there are more points to
12. Call shade. plot) go to step 16.
Return. Otherwise, return.

16. Set je = minimum of (6,isfno).

13. Go to the first data point of outline with pen up. Read another data card into XX, yy
ead ano , YY.

Set k = 2. This is the position in xx, yy at which to 17. If deltay is less than 0.001, go to step 18.

start plotting. The first point is the text position. Otherwise, rotate and translate xx, yy.
14. Plot points k to ie with pen down. 18. Set k = 1.

15. Subtract 6 from isfno. Go to step 14.

subroutine pllich (infom)

c
c PLOT BOTH LINES AND CHARECTERS
¢
common /param/ scaler,deltay,rsiz,rrsiz
common /dex/ if,ifnosisfsisfnosnotenors,nif,ispanrsini,ipens,kpen
dimension infom(22),xx(6),yy{(6)
c
c CHANGE PENS
c
call penchg (infoms,ipen)
¢
c READ THE FIRST COORDINATE CARD
c
ie=isfno
if(isfno .gt. 6) 1ie=6
read (inl1,1Us,end=230) (xx(id,yy(id,i=1,ie)
10 format (12f6.3)
ang=0.0
if (deltay .lt. 001> go to 30
do 20 i=1,ie
temp=xx(i)
xx(1)=yy (1)
yy(id=deltay~-temp
20 continue
ang=270.0
c
c PLOT FEATURE NUMBER
c
30 if (kpen .gt. 0) call newpen(3)
ff=if
call number (xx(1),yy(1),rsizsffrangr,=-1)
c
c CHECK FOR SUBFEATURE NUMBER
C

if (ifno .eq. 1) go to 70
cxxxxx*THE FOLLOWIWNG LINE IS INCLUDED TO ELIMINATE THE SUBFEATURE
Chxkk*k NUMBER IN VERSATEC PLOTS

it (kpen .gt. 0) go to 70

if (deltay .gt. .001) go to 50

yy{(1)=yy(1)=-rsiz=rrsiz

30 to 60
50 xx(1)=xx(1)=-rsiz=-rrsiz
60 ff=isf

call number (xx(1),yy(1dorsizoffrang,=1)

APPENDIX C 139

c CHECK FOR SPAN
c
70 if (ispan .eq. 0) go to 100

if (deltay .gt. .U01) go to 80
yy{1)=syy(1)-rsiz-rrsiz

go to 90
30 xx{(1)=xx(1)-rsiz-rrsiz
90 ff=ispan

call number (xx(1),yy(1),rsizsffrangese=1)
c
c CHECK FOR SECOND SUBFEATURE NUMBER
c
100 if (not .eq. U) go to 130

if (kpen .gt. 0) go to 130
it (deltay .gt. .001) go to 110
yy{(1)=yy(1)-rsiz-rrsiz

3o to 120
110 xx(1)=xx{(1)=-rsiz-rrsiz
120 ff=not
call number (xx(1),yy(1)srsizseffranges=1)
c
c CHECK FOR A SINGLE POINT
c
130 if (isfno .ye. 3) go to 140
call symobol (xx(2),yy(2),1.5*rsizs2sang,-1)
return
1644 if ((in1 .eq. 14) .and. (kpen .gt. 0)) go to 220
c
c RESET PEN
c
ipen=ipen-1
call penchyg (infom,ipen)
c
c PLOT LINES
c
call plot (xx(2),yy(2),3)
k=2
150 Jo 160 i=ksie
call plot (xx(Cid,yy(i),2)
160 continue
c
C CHECK FOR MORE COORDINATES
c
isfno=isfno-6
if (isfno) 230,230,170
170 if (isfno=-6) 180,180,190
180 ie=isfno
190 reaag (in1,10,end=230) (xx(i)oyy(idoi=l,ie)

if (deltay .lt, .001) go to 21U
do 200 i=1,1e
temp=xx(1)
xx(i1)=yy (i)
yy(i)=deltay-temp
20U continue
210 k=1

140 GEOINDEX
go to 150
220 call shade (xx,yy)
23U return
end
SUBROUTINE NAME: PLTSEL Set item = infom(2) + 1. infom(2) has possible

Author: Lawrence Balcerak

Purpose of the program: pltsel reads through a file of
coordinates, identifies those that are to be plotted, and
branches to the appropriate plotting subroutine.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call pltsel (infom)

Arguments: infom — Array of 22 elements with plotting
parameters for the file being read

Subroutines called: plotch, plotli, pllich

Common data referenced: ik, num, numsel, numsub, if,
isf, isfno, in1

Input files: coorNM

Output files: None

Arrays wused: infom(22)—Elements with plotting
parameters for the file being read

Called by: index__versatec, index_caicomp

Error checking and reporting: If some features cannot
be located, a message appears on the screen:

SOMETHING IS WRONG WITH THIS NUMBER

along with the number.

Constants: io = 0 sets the program for terminal output

values of 0, 1, or 2.
Set ik = 0. This is a counter for number of the outline
being plotted.
Set kount = 0. This is a counter for number of times
file has been read.
Add 1 to ik.
If ik is less than or equal to num go to step 4.
Otherwise, return. num is the total number of
outlines to be plotted.
4. Read a header card. If EOF, go to step 8.
5. If the feature and subfeature numbers of the header
card just read match with the selected feature, go
to step 7. Otherwise, go to step 6.
6. Read through to data points to reach the next header
card.
Go to step 4.
7. Call the appropriate plotting subroutine as identified
by item.
Go to step 4.
8. Add 1 to kount. Rewind data file:
If kount is less than 2, go to step 4. Otherwise go to
step 9.
9. Write to terminal giving error message about
unlocatable features.

Sl

Program logic: Set kount = 0

1. Set io = 0 (terminal output). Go to step 2.
subroutine pltsel (infom)

¢

c PLOT ONLY SELECTED FEATURES

common /sortau/
common [/dex/
dimension infom(22)
10=0
item=infom(2)+1
ik=0
kount=(

10 ik=ik+1

iwro = 0

if (ik=-num) 20,200,160

iksnumsnumset (150U) »numsub (1500) ,numgo (15u0)
it,ifnorisfr,isfnorsnotsenors,nifr,ispanrsinilsipenskpen

20 read (inl1,30,end=140) if,ifnos,isfrisfnosnotsnor,nifrispan
30 format (815)
if ((numsel(ik) .eg. if) .and. (numsub(ik) .eqg. isf)) go to 100
it ((numsel(ik) .eq. 1f) .and. (iwro .eqg. 1)) go to 1uu
50 read (inl,6Urend=140) x

APPENDIX C 141

60 format (f6.3)
if (isfno .le, ©) go to 20
isfno=isfno-6
4Jo to 5SuU
100 Jo to (130U,120,110)s0tem
114 call plotch Cinfom)
Jo to 1uJ
129 call plotly (infom)
Jo to 1u
130 call pllich Cinfom)
Jo to 1u
144 if (ik=num) 150,150,160
154 kount=kount+1

rewind inl
if ((iwro .e3e. 1) .and. (isec
it (iwro .ege. 1) yo to 2V

if (kount .,lt, 2)

go to 20

.€g. 1)) go to 157

write (10,155) numsel(ik),numsun(ik)
155 format (1x, "SOMETHING IS WRONG WITH THIS NUMBER.,",2(3x,15))

iwro = 1
isec = 1
Kount=y
go to 2U
157 kount = 0
isec
Twro
Jo to 10U
160 return
end

= J
= U

SUBROUTINE NAME: PLOTCH

Awuthor: Lawrence Balcerak

Purpose of the program: plotch plots the feature
number of an outline and then reads through the data
points for that outline.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call plotch (infom)

Arguments: infom — Array of 22 elements with plotting
parameters for the file being read

Subroutines called: number (Versaplot), penchg

Common data referenced: deltay, rsiz, rrsiz, if, ifno, isf,
isfno, not, ispan, in1, ipen

Input files: gridNM, statNM, counNM, coorNM

Output files: None

Arrays used: infom(22)—Elements with plotting
parameters for the file being read

Called by: rdftur, pitsel

E'rror checking and reporting: None

Constants: None

Program logic:

1. Call penchg.

. Read text position from first data card into xx and

yy.
. Set ff = if (the number to be plotted).

Set ang = 0.0 (the angle at which to plot).

. If deltay is less then 0.001, go to step 5.

Otherwise, the plot is to be transformed.
Set ang = 270.0. Rotate and translate xx, yy.

. Call number to plot the feature number. '
. If subfeature number is not to be plotted, go to next

step.

Set ff = isf.

The starting coordinate for the subfeature number
must be offset to place it directly under the feature
number:

If the plot is not rotated, subtract the letter size (rsiz)
and a small amount for a gap between lines (rrsiz)
from yy.

If the plot is rotated, subtract rsiz and rrsiz from xx.

Call number.

. Repeat previous step for the span.
. Repeat previous step for the second subfeature

number.

. If there are more data points, read through them to

position the file at next header card.
Return

142 GEOINDEX

subroutine plotch (infom)

c
c PLUT CHARACTERS ONLY
c
common /param/ scalesdeltayesrsizerrsiz
common /dex/ ifsifnosisfeisfnornotsnorenifrispansini,ipenskpen
dimension infom(22)
C
c CHANGE PENS
c
call pencnhyg (infomsipen)
c
C RctAD THE FIRST COORDINATE CARD
read (inl,1Us,end=120) XX oYYy
10 format (12f6.3)
c
c PLUT THE FEATURE NUMBER
c
ff=if
ang=0.U
if (deltay .lt, .0U1) go to 24
ang=270.u
temp=xx
XXZYyy
yy=deltay-temp
20 call numpber (xxsyyersizeffrangs=-1)
C
c CHECK FOR SUBFEATURE NUMBER
c
if (ifno .eqg. 1) go to 5U
if (deltay .gt. 001)go to 30
yy=yy-rsiz-rrsiz
Jo to 40
30 XXSTXX=rsiz-rrsiz
40 ff=ist
call numver (xxeyyorsizeftfoang,-1)
c
c CHECK FOR SPAN
c
50 if (ispan .eq. 0) go to &0
1f (deltay .yt. U01) o to 60
YYSyy-rsiz=rrsiz
3o to 71U
60 XXEXX~rsiz=rrsiz
70 ff=1ispan
call number (xxsyyorsizoffroangs=-1)
c
c CHECK FOR SECOND SUBFEATURE NUMBER
c
80 if (not .eq. 0) go to 110

if (deltay .yte. 0U1) go to 90
Yy=yy=-rsiz-rrsiz
Jo to 100

APPENDIX C 143

90 XXSXxX=-rsiz-rrsiz
100 ff=not
call number (xxsyyosrsizsffrang,-1)
c
d MUST PROCESS OTHER COORDINATE CARDS
¢
119 if (isfno .le.b6) go to 120

isfno=isfno-6
read (in1,10s,end=120)
3o to 110
120 return
end

XXeYYy

SUBROUTINE NAME: SHADE

Author: Lawrence Balcerak

Purpose of the program: shade draws coordinate
outlines and shades them either as a sequential variety
of patterns or as a predetermined pattern. There are
presently 10 patterns.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call shade (xx,yy)

Arguments: xx, yy— Pairs of coordinates from first card
image read in calling subroutine

Subroutines called: newpen, plot, tone (Versaplot)

Common data referenced: ik, numgo, deltay, kpen, int,
isfno, ip1-ip10

Input files: coorNM

Output files: None

Arrays used:
xx(6)—x coordinate
yy(6)—y coordinate
x(2000)~— Buffer area for x.coordinates
y(2000)— Buffer area for y coordinates

Called by: pllich

subroutine shade (xxs,yy)

Error checking and reporting: None

Constants: None

Program logic:

1. Add 1 to kpen. kpen is the counter by which the pat-

terns rotate.

2. Set first five elements of x, y = to elements 2 through
6 of xx, yy. The first coordinate pair of xx, yy is the
text position.

Read rest of coordinates into x, y.

If deltay is less than 0.001, go to step 5. deltay has a
positive value if the plot is to be rotated and
translated. The first five elements of x, y have
already been transformed in the calling program.

Rotate and translate the remaining elements of x, y.

5. Set the line width to two dots. Thick outlines are

more conspicuous.

6. Plot the outline. Go to the first point with pen up. Go

to succeeding points with pen down.

7. Set line width to one dot for the shading to follow.

8. If numgo(ik) is greater than 0, then change the

shading pattern to that number. Otherwise, set the
pattern to kpen.

9. Shade the outline.

Return.

Ll

10

common /sortd/ iksnumy,numsel (1500)»numsub(1500) rnumgo (1500)
common /param/ scale,deltayr,rsizsrrsiz
common /dex/ ifr,ifnosistsisfnorsnotsnor,nifr,ispansinisipenskpen
common /pat/ ip1(16),ip2€16),ip3(4)sripb(d),ip5(16),ipo(16).,

& ip7(16),ip8(16),1p9(16),1p10(16)
Jimension xx(6),yy (6),x(2200),y(2000)
kpenz=kpen+1
if (kpen .3t. 10)
do 10 1=1,5
x(1)=xx(i+1)
y(i)=yy (i+1)
continue
number=isfno-1
if (number-5) 50,50,20

kpen=1

144

GEOINDEX

(x(idsy(id)si=b6snumber)

go to 50

go to 7U

Jo to (3U,908,100,110,120,130,140,150,163+170U) snumgo (ik)

20 read (in1,30)

30 format (12f6.3)
if (deltay .lt. 001)
3o 43 i=6snumber
temp=x{(i)
x(i)=y (i)
y(i)=deltay-temp

40 continue

50 call newpen (2)
call plot (x(1),y(1),3)
do 60 i1=1,number
call plot (x(id,y(ide2)

60 continue
call newpen (1)
if (numgo(ik) .le. 0)

70

30 call tone (Uer(0ariple=-16)
go to 130

90 call tone (Jer0aripl2,-16)
go to louJ

10J call tone (UerDoripl3e-4)
4o to 180

110 call tone (Uer0eripbo-4)
go to 1484

129 call tone (Uer0.ripS5e-16)
40 to 150

130 call tone (UerUaripbe=-16)
go to 18U

149 call tone (Uer0erip?7,-16)
4o to 130

150 call tone (U.rUeripBder=-16)
Jgo to 134

160 call tone (UerDorip?,-16)
go to 13U

170 call tone (J.rleriplidr-106)

180 call tone (xeseyerenumber,1)
return
end

30 to (3U0,90,1000,110,120,130,140,150,160,170) skpen

SUBROUTINE NAME: SRTDUP

Author: Lawrence Balcerak

Purpose of the program: srtdup reads the selected
feature numbers to be plotted, sorts them into ascen-
ding order, and removes all duplications.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call srtdup (in)

Arguments: in— File number of parameter file pverNM

Subroutines called: None

Common data referenced: num, numsel, numsub,
numgo

Input files: pverNM
Output files: None
Arrays used:
numsel(1500) - Reference numbers
numsub(1500)—- Reference subfeature numbers
numgo(1500) - Optional shading pattern numbers
Called by: index__versatec, index_calcomp
Error checking and reporting: None
Constants: None
Program logic:
1. Set num = 1. num counts the reference numbers as
they are read in.
2. Read first:
numsel(1) (selected reference number).

APPENDIX C 145

numsub(1) (reference subfeature number).
numgo(7) (optional shading pattern number).

If numsel(1) = -1, return.

3. Read next line into itemp1, itemp2, itemp3.

If itemp1 = -1, return.

4. If the number is a duplicate of some existing member,
go to step 3.

If the number should be inserted between two ex-
isting members at position k, go to step 6.
Otherwise:

5. Add 1 to num.

subroutine srtdup (in)

ALL DUPLICATIONS

o 0O o0 o0 0

Set:
numselnum) = itemp1
numsub(num) = itemp2
numgo(num) = itemp3
Go to step 3.

. Shift all members of the arrays from position &

through num up one element.

Set:
numsel(k) = itemp1
numsub(k) = itemp2
numgo(k) = itemp3

Add 1 to num.

Go to step 3.

READ IN THE SELECTED FEATURE NJUMBERS TO BE PLOTTED.
SORT THEM IN ASCENDEDIWNG ORDER AND REMOVE

common /sortd/ ikenuasnumsel (1540),numsub(1500) »numyo (1500)

num=1

reaad (in,20)
24 format {(18d,12,12)

1if (numsel(1) .eg. -1)

numsel (1) ,numsub(1),numgo(1)

go to U

c SORT AND REMOVE DUPLICATE CARDS AS EACH IS READ IN

30 read (in,20)
if (itempl .eg. =1)
do 70 k=1,num

1f ((itempl .ege. numsel (k)

40 to 34

if (itempl .yte. numsel (k))

1t (itempl.lt. numsel(k))

go to 50
k=k+1
if (k .3t. num)
Jo to 40U

50 L=num+1
do 6u
L=L-1
numsel (l+1)=numsel (L)
numsub(l+1) =numsub (L)
numgo(l+1)=numgo (L)

6l continue
numnsel(k)=i1templ
numsub(k)=itemp?
numgo(k)=itemp3
num=num+1
30 to 3J

70 continue

80 num=num+1

go to 8U

J=ksnum

itemplsritemplritemp3
3o to 9U

.and. (itemp2 .eq. numsub(k)))

go to 70
go to 50
49 1f ((itemp? lt. numsud(k))

.or. (itempl .lt. numsel(k)))

146

numsel(num)=itemp?
numsub{(num)=1temp?
nungo(num)=itemp3
yo to 39

90 return
end

GEOINDEX

SUBROUTINE NAME: PATTERN

Author: Lawrence Balcerak

Purpose of the program: pattern sets the shading pat-
tern variables to user-defined values.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call pattern

Arguments: None

Subroutines called: None

Common data referenced: pat

subroutine pattern
common /pat/

Input files: None
Output files: None
Arrays used: ip1(16), ip2(16) ip3(4), ip4(4), ip5(16),
ip6(16), ip7(16), ip8(16), ip9(16), ip10(16) (shading
pattern arrays)
Called by: index__versatec, verplot
Error checking and reporting: None
Constants: None
Program logic:
1. Set all elements of the shading pattern arrays to
those interger values that will give the bit patterns
desired.

ip1(16),ip2€16),ip3(4),ipb(b),ip5(16),ip6(16),

& 1p7¢16),ip8(16),ip9(16),ip10(16)

do 10 I=1,4
ip3(i)=0
ipb(i)=0

10 continue
do 20 i=1,10
ip1(i)=0
ip2(1)=0
ip5C(i)=0
ip6(i)=0
ip7 (i)=0
ip8(i)=0
ip?(i)=0
ipl10Cid=Y

20 continue

1p1(1)=4%x16x%4+1
1p1(5)=16*ip1(1)
1Pp1(9)=8x16%%6+2x16%%2
1p1(13)=16%xip1(M)

ip2(4)=ip1(¢13)
ip2(8Y=ip1(y)
ip2(12)=ip1(5)
ip2(lo)=ipl (1)

ip3(1)=64x164%4+1

IPpL(3)=L*x16*x*xB+2x16xxb6+16**x4+Bx16

ip5C1)34%x16%%7
ip5(2)=16**8+16%*7

APPENDIX C

1PpS(4)=2%xT10*x*xB+8%x16%x%6
ip5(6)=ip5(2)
ipS(?7)=ipS(1)
ipS(9)=16*x3
ipSC10)=4%10xx3+4x16%%2
ipS(12)=8%x16*x342x16%%2
ipSC14)=ip5C10)
ipSC15)=ip5(9)

147

1PO(1)=B*x16**x7+B8x16x*6+4x16**S+Lx16x*x4+2 %165 %x3+2%16%x%x2+16+1

ip?7(4)=To*xx4+8*x16

Ip7(B)=4*xT6**B+L*x1 6% % 7+2%16*x6+16%*4+T16x*3+8%16

Ip7(12)S4%x16%%x842%x16%%6
ip7(16)=ip7(38)

1p8(1)=ipb(1)
1p8(9)=ipb(1)

1pY(2)=ip5(2)
ip9(4)=ip5C1)
ipP(o)=ip5(2)

1PI(8I=L*xT1o**x3+2 %1 6x*6+16%x*4+8%16

ip9(10)=ip5(10)
ip9(12)=ip5(9)
ip9(14)=ip9 (10)
ip9(16)=ip9(8)

ip10(2)=1p5(9)

ipTU(L)Z16%%b+54164%3+4%16%%x2+8%16

ip10C6)=ip10(2)
ip10(8)=4x16*x%7+16%%3
ip10C10)=ip5(7)

ip10(12)=5%16+*B+5%x16%*7+2%x16%x%6

ip10C14)=1p10C10)
ip10C16)=ip10(8)

return
end

EXEC_COM: SORT.VERS.COOR.EC

Awuthor: Donald Hanson

Purpose of the program: sort.vers.coor.ec executes the
three programs written in the Multics command
language and system__sort that produces the sorted
coordinate file.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: ec sort.vers.coor NM

Arguments: NM—FIPS code

Subroutines called: pgm1i.vers.exthdr, pgm2.vers.
sequent, pgma3.vers.merge

Common data referenced: None

Input files: coorNM.unsort used on unit 10 (file10)

Output files:
coorNM.unsort.hdr used on unit 12 (file12)
coorNM.sequent used on unit 14 (file14)
coorNM.sort.hdr used on unit 10 (file10)
coorNM

Arrays used: None

Called by: None

Error checkiing and reporting: None

Constants: None

Program logic:

1. To execute this exec com, the operator must type:
ec sort.vers.coor NM
where NM is the State code.

148

2. A message will print that the first program has
started executing. This program extracts the
header records from the unsorted coordinate file.

3. The unsorted coordinate file (coorNM.unsort) is at-
tached to file10, and the unsorted header file is at-
tached to file12.

4. The next step is the system sort, which sorts the
header file by feature number and subfeature
number. These are the first 10 characters of the
header record.

5. A message will next appear that program 2 has been
started. This program takes the unsorted coord-
inate file and converts it from a stream to a se-
quential file.

6. The stream coordinate file is attached to file73 and
the sequential coordinate file is attached to file74.

.

sort.vers,couvr.ec

Jse:
where nm 1s

state code
function:
a sorted coordinate file.
records are then sorted

to a sequential file,

coordinate file.

X @K Q0eeRORCR XX QR RRXE XS

&print programl started
&

io attach filelU vfile_
o attach filel2 vfile_
pgml.vers.exthdr

io detach filel0

io detach file1?

&
&print
&
sort_sey coord&1.unsort,hdr
X

&print proyram 2 started
&

i0 attach filel13 vfile_
10 attach filel4 vfile_
pgm2.vers.seqgquent

10 detach filel13

sort started

coordl.unsort

coork&l . unsort,.hdr

-sm coor&l,.sort.hdr

cooré&l.unsort
coor&l.sequent

GEQINDEX

7. When program 2 is completed, program 3 starts.

8. The third program merges the sorted header file
and the unsorted coordinate file in to the sorted
coordinate file.

9. The sorted header file is attached to file70. The se-
quential coordinate file is attached to file13.

10. file13 is opened with a mode of sequential update in
order to allow records to be deleted after they
have been written to file12.

11. The sorted coordinate output file is attached to
file12.

12. At completion, all files are closed and a message
appears:

JOB FINISHED

KAk kA kA hhkhhhkkhkhkkhkkk Ak Ak Ahhhhk hhhdhkkkhkAkkkkdokkhkkhkk

AXAXK XK KA RAKNA AKX A AANARARAKRAAKRAR AR AN AN A AR AR A kAN kAN, Kk

ec sort.vers.,coor.ec nm

this ec takes the unsorted coordinate file and produces

The first program extracts the
header records from the unsorted coordinate file.
in sort_seg.
tne unsorted coordinate file and converts
The third program meryes the sorted
header file and the unsorted coordinate file

The header
The second program takes
it from a stream

into the sorted

-fL 1 10

APPENDIX C

io detach fileléd

&

aprint program3 started
&

i0o attach filel0 vfile_
io attach filel3 vfile_
io open filel13 squ

io attach filel12 vfile_
pgm3.vers.merye

10 detach filel0

10 close filell

io detach filel3

10 detach filel?

gprint coorainate file merge 1is
&print job finished

coordl

149

coor&l.sort.hdr
coor&l.sequent

complete

SUBROUTINE NAME: PGM1.VERS.EXTHDR

Author: Donald Hanson

Purpose of the program: pgm1.vers.exthdr extracts the
header records from the files that were created on the
Data General minicomputer. The input is the unsorted
coordinate file created in versatec.ec and merged
together in editor gedx. This program is the first pro-
gram executed in sort.vers.coor.ec.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: pgml.vers.exthdr

Arguments: None

Subroutines called: close_files

Common data referenced: None

Input files: coorNM.unsort

Output files: coorNM.unsort.hdr

C this

is a program to extract the header

Arrays used:
data(72)— Coordinates
i(8)—Header records
Called by: sort.vers.coor.ec
Error checking and reporting: None
Constants: None
Program logic:
1. The input file is attached by the I/0 switch to file10.
2. The output file is attached by the I/O switch to file12.
3. The input file consists of header and coordinate
records not in order by feature number. The input
file is read and the header records only are ex-
tracted and written to the output file. The output
file consists of header records not in order by
feature number.
4. The input file is read until the end of file is reached,
at which time the STOP message appears.

records

from the files that were created on the Bendix minicomputer

o written DHanson 4/5/738
external cf(descriptors)
dimension 1(3)
dimension data(12)
print.,"exthdr started”
75 read(10,100,enu=300) i

100 format(si5)
write(12,150) i
150 format(8i5,40x)
170 read(10,200+,end=300) data
200 format (12f6.3)
1(4) = 1(4) - 6
if(i(4).gt.U) go to 170
go to 75
300 call cf("=-all™
stop

end

150

SUBROUTINE NAME: PGM2.VERS.SEQUENT

Awuthor: Donald Hanson

Purpose of the program: pgm2.vers.sequent changes
the unsorted coordinate records from stream to se-
quential, which is necessary because the position
parameter in pgm3.vers.merge must operate on a se-
quential file. The input is the stream format unsorted
coordinate file, and the output is the sequential format
unsorted coordinate file. This program is the second
program executed in sort.vers.coor.ec.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Arguments: None

Operating system: Multics

Calling sequence: pgm2.vers.sequent

Subroutines called: close_files

Common data referenced: None

Input files: coorNM.unsort

Output files: coorNM.sequent

Arrays used:
ihead(8)— Header records

d this

GEOINDEX

data(12)- Coordinate records

Called by: sort.vers.coor.ec

Evrror checking and reporting: None

Constants: None

Program logic:

1. The input file coorNM.unsort is attached by the I/0
switch to file13.

2. The output file is attached by the I/O switch to file14.

3. The input file is read in a formatted stream mode,
and the output file is written in an unformatted se-
quential mode.

4. The number of coordinate data points that follow
each header card is contained in the fourth field of
the header card.

5. As each data card is read, six is subtracted from the
number of points because each record contains six
pairs of coordinates.

6. When this number is no longer greater than zero, the
next record is a header record.

7. This process is continued until the end of file is
reached.

is a program to change the unsorted coordinate

C records from stream to sequential

c
external cf(descriptors)
dimension ihead(s),data(12)
75 read(13,100,end=300) ihead
write(14) ihead
240 read(135,250,end=300) cata
write(14) data
ihead(4) = ihead(4)
if(ihead(4).gt.)
goto 75
format(8i5)
format(12f6.3)
call cf("-all™)
stop

- 0

goto 240
109
250
300

end

SUBROUTINE NAME: PGM3.VERS.MERGE

Awuthor: Donald Hanson

Purpose of the program: pgm3.vers.merge merges the
unsorted coordinate file and the sorted header file to
form the sorted coordinate file. This file is then used
for input to the index__versatec programs. This pro-
gram is the third program executed in sort.vers.-
coor.ec.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: pgm3.vers.merge
Arguments: None
Subroutines called: io__call, close__files
Common data referenced: None
Called by: sort.vers.coor.ec
Input files: coorNM.sort.hdr, coorNM.sequent
Output files: coorNM
Arrays used:

x(6)—x coordinate

y(6)—y coordinate
Error checking and reporting: None
Constants: None

APPENDIX C

Program logic:

1. There are two input files. The first input file,
coorNM.sort.hdr, is attached by the 1/0 switch to
file10.

2. The second input file, coorNM.sequent, is attached
by the 1/0 switch to file13.

3. The output file is identified by the name coorNM
and is attached by the I/0 switch to file12.

4. The records from file10 and file13 are read. If
feature number and subfeature number of file10
match those of file13, the records are written to
file12.

5. The records in file13 that have been matched are
then deleted from file13 by the delete_record

151

feature of io__call. By deleting these records that
are no longer needed from the input file, total pro-
cessing time is drastically reduced.

6. When the feature and subfeature numbers do not
match between file10 and file13, file13 is ad-
vanced until a match is found.

7. When feature numbers cannot be matched file13 is
positioned to the next header records by the
char_skip feature of io_call.

8. After a match has been found and the records written
to file12, file13 is positioned at the beginning of
file, (BOF), by this feature of io__call. The cycle is
then repeated until the end of file is reached.

c this is a program to merge the unsorted coordinate
c file and the sorted header file for versatec
external io(descriptors)

external cf(descriptors)
integer skip

character*3 char_skip
dimension x(6),y(6)
75 read(10,100,end=300)
120 read(13,end=300)

iifsifnosisfrisfnosnotsnorsnifsrispan
11fls,ifnolsisfls,isfnolsnotisnort,nifl,ispan

if(iifl.egysiifoandsisf.eq.isf1) goto 220

if (mod(isfnol,6).eq.uU) goto 200
skip =

goto 400

200 skip = isfnol/é6

403 encode(char_skips,500)
call

goto 120

22V

skip

call 1o
read(13,end=304)
call
write(12,250) (xCi),y (i) ,»i=1,6)
isfnol = isfnol - 6
if(isfnol.9t.0) goto 240

call
goto 75
format(8i15)
format(83i15,40x)
format(12f6.3)
format(i3)

call cf("-alL™
stop

end

2440

104
234
254
500
300

ifix(float(isfnol)/6.0 + 1.0

io("position","filel13","fwd"schar_skip)

write(12,230)1if,ifnosisfrisfnolsnotenore.nifrispan
("delete_record”,”"filel13")
(x(1) oy (i) sri=1,6)
io ("delete_record”,"file13")

io ("position","file13","bof")

152
PROGRAM NAME: MASTER

Awuthor: Harold Johnson
Purpose of the program: master uses the numerical
coordinate files for maps of the State and the
reference outlines to calculate the areas in square
kilometers, to calculate reasonable center-point coor-
dinates for each area, to test the reasonableness of
these center points, and to output a file of center
points that may not be suitably located.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: master
Arguments: None
Subroutines called: arcntr_master, adjust_master,
closer, ftnumber
Common data referenced: true, sk, ia
Input files:
areano used on unit 37 (file37)
List of variables: it = true State area in square
miles.
Formats: (I6)
Layout description: See areano.
statNM used on unit 31 (file37)
coorNM used on unit 32 (file32)
Output files:
areaNM used on unit 33 (file33)

xkhkkhkrk NJASTER *xkkkx

hdk ok ok ok kk kK PROGRAM MASTER

o

1. USING
"STATNM",

3. EACH MAP OUTLINE IN

OF THE OUTLINE IS LARGE.,
SIDE OF THE BUUJUNDARY.
A FILE CALLED "duuBT"
5. FINALLY THE SUBROUTINE
SAME "IF" NUMBER.

OO0 0 o000 0000000000000 00O~0O060

|
|
|
|
i
|
|
[
|
|
i THEIR
|
i
]
|
i
|
|
|
|
|
|

- - — " WD - —— - - - e - v e e am W -

THIS PROGRAMA DOES THE FOLLOWING:
"ARCNTR™, MASTER CALCULATES THE STATE AREA

2. READS THE TRUE STATE AREA FROM FILE
RATION OF THESE TO GIVE A CORRECTIQwW FACTOR
MULTIPLIES EVERY SUCCESSIVE AREA CALCULATION
"COORNM"
POINT IS CONSTRUCTED ALONG WITH AN AREA.

THE FILES "CNTRNM" AND "MEASAm",
4o USING "CNTEST"™ SUBROUTINE,

NEARNESS TO THE BOUNDARY OF THE QUTLINE WHEN THE ODIAMETER
AND FOR THEIR PQOSITION INSIDE OR OQUT-
CENTERS WHICH FAIL THE TEST ARE WRITTEN
AND TO FILE 6.
"ADJUST"
THE OUTPUT FILE IS

THE FOLLOWING INPUT FILES ARE REQUIRED:

LIST OF STATE CODES AND TRUE STATE AREAS.,

FILE 5 = TO INPUT AREA CODE AND MAP SCALE.
FILE 37 =

FILE 31 = "STATNM"

FILE 32 = "COORNM"

GEOINDEX

Format: (215, F8.1)

File created by: adjust_master

Layout description: Area is the summed areas of all
outlines having the same if.

measNM used on unit 40 (file40)

List of variables: if, isf, area

Formats: (215, F8.1)

File created by: master

Layout description: Area is the area of the outline
with the corresponding if, isf.

Arrays used: None

Called by: None

Error checking and reporting: None

Constants: None

Program logic:

1. Input files are identified with Fortran numbers:
statNM, coorNM, are coordinate files for plotting
the State outlines; areano is a file of State areas.
The user is prompted for only the FIPS code
number ia and for the scale used in the maps from
which statNM, and coorNM were derived. Scale is
1 to sk.

2. areano is searched for the true area of this State.

3. arcntr_master is called to compute the areas of the
outlines for this coorNM file, and areas are ad-
justed using the State areas.

4 . adjust_master is called to sum areas belonging to
the same reference.

Khkkxkkhkkhhkhkkkkhkxk

- - - - WS WD W - S e s W W - - - - -

FROM FILE

FORMS THE
WHICH IS

"AREANO'" AND
"FACTOR"

IS THEN EXAMINED AND A CENTER
THESE ARE WRITTEN TO
RESPECTIVELY

THESE CENTERS ARE CHECKED FOR

SUMS ALL AREAS HAVING THE
"AREANM",

=AREANO"

D i L T T iy

O 00 000000 00000000000

C

APPENDIX C 153

|
i THE FOLLOWING OUTPUT FILES ARE REQUIRED:

| FILE 33 "AREANM'" (SUMMED AREAS)

| FILE 34 "CNTRNM" (CENTER POINTS)

| FILE 15 "DOUGT" (DOUBTFUL CENTER POINTS)

| FILE 40 "MEASnAm" (ALL AREAS BY SEPARATE IFfF, ISF)
|

|

i

|

|

FILE 6 = MESSAGES TO TERMINAL

WOTE: WHEN FINISHED, CHANGE "MEASnm"™ TO "MEASNM" FOR FUTURE
USE.

- e - e . W - WD SR s G S G WS W e G e W D T WD G P WL G PR Gn A G G G R S NS W R IS WD WS AL N P WD W NP W WS YR WP WS e WD WS @

JPDATED AS OF DeCa 27, 1976 4. JOHNSON
converted to multics May 7, 1977 by H Johnson.

PROGRAM TO CALCULATE AREAS AND CENTERS FOR OUTLINES, DETERMINE WHEN
CENTERS ARE INSIDE THE OUTLINES AND WHEN PROPERLY CENTERED.
IT AL30O SUMS AREAS wWITH THE SAME IF.

common trues,sSkerid
character file*x4, statex2, outfilex6, modexd

write(o,880)

88U format("” THIS PROGKAM USES THE FILES cooriM AND statN™m TO"/

”

PRODUCE JEW FILES areaNM, cntrNM, measNM AND doubt."/

"OTHERE WILL SE ERRORS IF THESE FILES ALREADY EXIST FROM "/

”
”

C

PREVIOUS RUNS."/
IF areaNMs, measwid ALREADY EXIST, HIT BREAK, "/
VELETE THESE FILES AND RUN MASTER AGAIN.'")

write(o,93J)

903 format("OENTER IN THE 2-DIGIT CODE FOR THE STATE BEING STUDIED™)
read(5,91U) state

910 format(a?d)

decode(state,?13) 1a

913 format(i2)

write(6,914)

914 format(" YOUR MAP HAS SCALE 1 TO WHAT = F3.0 =-?")
read(5,916) sk

915 tformat(f&.0)

outfile = "areano”

moue = "si"

call ftnumber(37,outfilermode)

file - "COOF"
encode(outtile,?20) state
92U format(”coor",al)

call 10 (Mattach","file32","vfile_",outfile,"-append”,"-ssf")
call 1o0("open”,"file32","si")

encode (outfile,¥22) state
922 format("stat",a2l)

call ftnumpber(31,outfilermode)

mode = 'so"
encode(outfile,924) state
924 format("area",ald)

call ftnumber(33,0utfiler,mode)

154

mode = "sio
encode{outfile,9¢7) state
927 format('meas",al)
call ftnumoer(4Q0s,outfilesmode)
outfile = "doubt"
mode = "so "
catl ftnumber(15,outfilesmoce)
do 7 jj=1s1a
read(37,934d)1it
7 continue
93y format(i6)
true = float(it)
call arcntr_master
rewdind 40
call adjust_master
call closer(37)
call closer(32)
call closer(31)
call closer(33)
call closer (40)
call closer(15)

c
¢ wOWw SORT THE
c
encode(outfile,952) state
952 format("meas",a?2)

MEASKNM FILE

GEOINDEX

call sort_segfoutfile,"=fL","1","104")

c
stop
end

SUBROUTINE NAME: ARCNTR_MASTER

Awuthor: Harold Johnson

Purpose of the program: arcntr_master calculates the
areas, corrected, of the outlines whose coordinates are
contained in coorNM

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call arcntr__master

Arguments: None

Subroutines called: weight_master

Common data referenced: true, sk, ia

Input files:
statNM used on unit 31 (file371)
coorNM used on unit 32 (file32)

Output files: measNM used on unit 40 (file40)

Arrays used: xx(6), yy(6)

Called by: master

Error checking and reporting: True State area is
reported to the user, along with the area calculated for
each part of the possibly multiconnected State boun-
dary. An estimate is given for each of these closed

segments. The ratio of calculated to true State area is
also given to the user. Where this differs markedly
from 1, an error may have occurred.

Constants: None

Program logic:

1. The first file processed is areaNM, the coordinate file
for the State boundary. A header card is read,
noting the total number of data points, isfno. The
successive data cards are read, and a calculation is
made. Area is incremented by the amount

(o — %)Y + ¥1))/2
for each segment in the coordinate file running
from (%, Yo) to (%, ¥,)-

2. While the State coordinates are being processed, all
areas are summed and used to give a factor, the
ratio of the true State area to the State area
calculated for this map projection; this ratio will be
used in all successive calculations as a factor to
modify those calculations.

3. The second file, coorNM, is now processed as in 1,
and the calculated centers and areas are written to
file measNM.

APPENDIX C

c **xxxxk*x SUBROUTINE ARCNTR_MASTER #akkkuw*
subroutine arcntr_master
WEIGHTED AVERAGE CENTER AND AREA PROGRAM ok ok okok ok ok kokokk

Chhhkkkhkhk

¢ SUBROUTINE OF THE
JPDATED AS OF DEC. 27,1976 He JOHNSON
converted to Multics May 7, 1977 by H Johnson

O o0 o0

c

MAIN PROGRAM "MASTER".

common truesskeia
dimension xx(6),yy(6)

¢ EQUATE 30 TO THE SOURCE FILE TAREA, CONTAINING THE TRUE AREA IN
C SQUARE MILES
write(6,9799)true

format(" true area = ",110.3)

9799

¢ EQUATE 31
¢ EQUATE 32
EQUATE 40
EQUATE 34

OO 00

i

701
904
c

TO THE
TO THE
TO THE
TO THE

factor
tem=25

STATE BOUNDARY FILE, STAT--
COORDINATE FILE, COOR--
TEMPORARY AREA FILE ARTEMP
NEW CENTER FILE, CNTR=--

1.0

scale=645,16
format(12f6.3)
format(3i5)

¢ FIRST, COMPUTE THE STATE MAP AREA IN SQUARE KILOMETRES.

C

109
c

in=31

ioareazb6t
iocntr=9%

nrun=1

totar=0.0
read(in,900,ena=99) ifrsifnosisfsrisfnosnotesenore.nif,ispan

¢ WHEN ISFNO IS LESS THAN 4 WE DON'T HAVE A REGION AT ALL

c

if(isfno.gt.3)go to 102
read(in,901,end=99) (xx(i),yy(i)si=1,6)

[a B o}

102
c

¢ CALCULATE NCARDS.,

C

IN THE CASE OF A SINGLE POINT, CALL THAT POINT CNTR.

ixc=xx(2)*1000. +.5
iyc=yy(2)*1000, +.5
isfno=2

go to 100

continue

THE NUMBER OF DATA CARDS ON THIS MAP

ncards=isfno/é6
t1f(b6*ncards .lt., isfno) ncards=ncards+l

area=0.
xc=0,

155

156

OO0 00000

20y

301

309
400
c
c
c

401

GEOINDEX

yc=0,
dt=0.

XC IS GOING TO BE THE X-COORDINATE OF THE CENTER
YC IS GOING TO dE THE Y/COORDINATE OF THE CENTER
DT IS THE ACCUMULATED NORMED DISTANCE SETWEEN POINTS

READ IN

READ IN

THE FIRST DATA CARD

read(in,9201,end=99) (xx(i)ryy(1),i=1,6)
xstart=xx(2)

ystart=yy(2)

ie=6

if(ncards .eq. 1) i1e=isfno

do 20U j=3,1e

J1=3-1

area = area + (xx(j)=xx(j1))*x(yy(jl+yy(j1))*x0,.5
call weight_master(xx(j1),yy(j1)oxx(})syy(jloxceycodt)
continue

itf(ncards .eq. 1) go to 50U

xlast=xx(6)

ylast=yy(6)

if(ncards .eq. 2) go to 400
THE MIDDLE CARDS, BETWEEN THE FIRST AND LAST,.

kl=ncards-1

do 300 k=2,kl

read(in,901) (xx(i),yy(i),i=1,6)
area=areat(xx(1)-xlast)*(yy(1)+ylast)*0.5

call weight_master(xlastroylastsxx(1),yy(1)oxcoycodt)
do 3U1 j=2,6

11=j-1

area = area *+ (xx(j)=xx(j1))*x(yy(j)+yy(j31))*0,5

call weight_master(xx(j1),yy(j1)oxx(jlayy(jloxceycerdt)
continue

xlast=xx(6)

ylast=yy(6)

continue

continue

NOW READ IN THE LAST CARD

read(in,901) (xx(idsryy (i) ,ri=1,6)
ie=isfno-6*«(ncards-1)

if(ie .eq. 0) i1e=6
areazareat+(xx(1)-xlast)*x(yy(1)+ylast)*(0.5

call weight_master(xlastsoylastrexx(1),yy(1)oxcoryceodt)
if(ie .eg. 1) go to 500 '

do 401 j=2'ie

irt=3-1

area = area + (xx())=xx(j31))*(yy(j)+yy(31))*0,.5

call weight_master(xx(j1),yy(j1)oxx(jleyy(jl)oxcoycordt)
continue

APPENDIX C 157

500 continue
c
c WHEN THE REGION IS NOT CLOSED, WE MUST ADD THE LAST DATA POINT
c
test=(xx{(1e)-xstart)**2 + (yy(ie)-ystart)xx?
if(test.lt..01) go to 501
call weight_master(xx(ie),yy(ie)s,xstartoystartsxcesycodt)
area=areat(xstart-xx(ie))x(ystart+yy(ie))*(0,5
501 continue
if(nrun.gt.1)ygo to 503
fisfno=isfno-1
error=dtx,.001+,000001*(fisfno)
error=error*xscale*((sk/1000000.)%%2)
write(6,903)if,isfrerror
903 format("™ THE AREA CALCULATION FOR IF =",i5," ISF =",1i5,
" HAS ERROR BOUNDED 3Y",f10.3)
SU3 continue
area=abs(area*scalexfactor*((sk/1000000.)*%x2))
xc=xc/dt
yc=yc/dt
isfno=2
905 format(3i5)
ixc=xc*1000.
iyc=yc*1000.
903 format(12x,216)
write(ioareda,9u7)ifrisf,area
if(if .eq. 995)g30 to 550
totar=totar + area
907 format(2i5,f8.1)

554 if(ispan .eq. 0)go to 100
ispan=-ispan
ifl1=if+1

ione = 1

do 600 j=ifl,ispan
write(ioarea,9d07)),10ne,area
600 continue
¢ ON THE STATE AREA RUN, WE WANT TO COMPUTE FACTOR.,
¢ WHICH IS THE RAT10 OF THE TRUE TO CALCULATED AREAS.
o
go to 100
99 if(nrun .gt. 1)return
¢ CHANGE TRUE 70 SQUARE KILOMETRES AND COMPUTE RATIO.
true=truex?2.59
Wwrite(6,9898)true
9898 format (f10.3)
factor=true/totar
C NOW SET INPUTS TO READ THE COORDINATE FILES
write(6,9899)factor
9899 format(" FACTOR =",1f10.3)
c
nrun=2
totar=0.0
in=32
ijoarea=40
go to 100
end
C *kkkxxx END ARCNTR_MASTER %%k xxxx*

158

SUBROUTINE NAME: WEIGHT_MASTER

Awuthor: Harold Johnson
Purpose of the program: weight_master is used to
modify the previously calculated center point by
means of a weighted average of the midpoint of a new
edge of the outline.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call weight__master (x1,y1,x2,y2,xc,-
ye,td)
Arguments:
x1, y1—Coordinates of one end of the new segment of
the outline
x2, y2—Coordinates of the other end
xe, yc—Coordinates of the center point
td—Sum of the squares of the lengths of the outline
segments

C *hkhkkkkk

GEOINDEX

Subroutines called: None

Common data referenced: None

Input files: None

Output files: None

Arrays used: None

Called by: arcntr_master

Error checking and reporting: None

Constants: None

Program logic:

1. The square of the length of the segment is calculated,
z.

2. The average of the x coordinates of the segment is
multiplied by z and added to xc.

3. The average of the y coordinates of the segment is
multiplied by z and added to yc.

4. 7 is added to td. (In the calling program, after all
calculations on an outline are completed, xc and yc
are divided by td.)

SUBROUTINE WEIGHT_MASTER *xkxkkx

subroutine weight_master(x1lsyl1sx2sy2sxCcoycetd)

C SUBROUTINE USED IN MAIN
¢ UPDATED AS OF DEC. 27,
C

1976 H.

¢ converted to multics May 6,
(o
2=abs(x2-x1)
xC=xC + J.5*%(x2+x1) %2

Y€ = yc + Jo5*(yl+yl) 2
tda = td + 2

return
end

C *#**kkxx END WEIGHT_MASTER **akkux

1977 H.

+ abs(y2-y1)

PROGRAM "MASTER"
JOHNSON

Jonhnson

SUBROUTINE NAME: ADJUST_MASTER

Awuthor: Harold Johnson
Purpose of the program: adjust_master is used to sum
the areas of all outlines having the same reference
number, if.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call adjust__master
Arguments: None
Subroutines called: None
Common date referenced: None
Input files:
measNM used on unit 40 (file40)
List of variables: if, Isf, area
Formats: See master.

Layout description: See master.
Output files:
areaNM used on unit 33 (file33)
List of variables: if1, isf1, areal
Formats: See master.
File located by: adjust_master
Layout description: See master.
Arrays used: None
Called by: master
Error checking and reporting: None
Constants: inarea = 40; ioarea = 33
Program logic:
1. The area file measNM is rewound.
2. Areas are successively read, and if two are from the
same if, their areas are summed.
3. Each time a new if is found, the old area is written to
areaNM.

APPENDIX C

C *hkkkhkkk

SUBROUTIWNE ADJUST_MASTER
subroutine adjust_master

159

*k kk ok kK

c

¢ SUBROUTINE USED IN MAIN PROGRAM "MASTER".

¢ JPDATED AS OF DEC. 27, 1976 He JJIHNSON

C

¢ converted to multics May 6, 1977 H. Jonhnson

c ***ADJUST AREA FILES

c

¢ IN CASE OF SEVERAL OUTLINES WITH THE SAME JF, THIS PROGRAM

¢ SUMS UP THESE AREAS

c
inarea = 40U
ioarea = 33

¢ EQUATE 4UJ TO THE AREA SOURCE FILE ARTEMP

¢ EQUATE 33 TO THE OQUTPUT AREA FILE AREA--

c

1 read(inarea,9%00,ena=99)i1f,isfrarea

90J format(2i5,f8.1)

2 read(inarear,900,end=99)ifl,isflsareal
1f(if1 .eq. 1f) yo to 3
write(ioarea,900)if,1sf,area
if=i11
area=areal
go to 2

3 area=areatareal
go to 2

c

99 write(ioarea,90U)if,isfrarea
return

end

C *#kkxxx END ADJUST_WMASTER #kxkxxn

SUBROUTINE NAME: WORK_MASTER

Awuthor: Harold Johnson

Purpose of the program: work_master calls two func-
tions that are used in computing the distance from the
center point to the boundary and in counting how
many times the horizontal ray to the right of the
center crosses the boundary.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call work__master (x1,y1,x2,y2,xcen,-
nx,dst)

Arguments:
x1, y1—Coordinates of one end of a segment of the

boundary

x2, y2—-Coordinates of the other end of the segment

xcen, ycen—Coordinates of the center
nx —The number of times the boundary crosses the
horizontal ray from the center point
dst—The minimum distance from the center point to
the boundary
Subroutines called: dist_master, ncross__master
Common data referenced: None
Input files: None
Output files: None
Arrays used: None
Called by: cntest_master
E'rror checking and reporting: None
Constants: None
Program logic:

1. The two functions dist and ncross are called to
possibly modify the values of nx and dst.

160

C *kkkxkk

SUBROUTINE WORK_MASTER

GEOINDEX

kk kkk kk

subroutine work_master (x1,yl,x2s,y2,%xcenr,ycensnxrsdst)

SUBROUTINE USED IN

UPDATED AS OF vEC. 27, 1976 i,

converted to multics May 6.

O 0 00 o0

MAIN PROGRAM "AASTER™
JOHNSON

1977 by H Johnson.

dst=dist_master{(xl,ylsx2sy2srxcenrycensdst)
nx=ncross_master(xls,ylsx2rylrxcenrycensnx)

return
end
C *xxxxkx END WORK_MASTER *xxkkkx

FUNCTION NAME: DIST_MASTER

Awuthor: Harold Johnson

Purpose of the program: dist_mvaster computes the
distance from the center to a segment whose end-
points are given. This distance is compared with a
previously calculated minimum distance, and the
minimum of the two is returned as the value of dist.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: dst = dist_master (x1,y1,x2,y2,x0,y0,-
dold)

Arguments:
x1, y1—Coordinates of one end of the segment
x2, y2-Coordinates of the other end of the segment
x0, y0—Coordinates of the center point
dol/d—Previously calculated minimum distance

Subroutines called: None

C *hkkkk*kk

SUBROUTINE DIST_MASTER

Common data referenced: None

Input files: None

Output files: None

Arrays used: None

Called by: work_master

Error checking and reporting: None

Constants: None

Program logic:

1. The segment is tested to determine whether its
length is zero; if it is zero, dst = dold.

2. The point is found on this one line through x7, y7 and
x2, y2 that is closest to x0, y0.

3. When this point is outside the line segment, the
nearest endpoint is used as the nearest point.

4. Distance from the center to the nearest point is com-
puted and compared with do/d. The smaller value
is returned as the value.

LE R S8 8 & 4

function dist_master(x1,y1sx2,y2+,x0s,yU0,dold)

subroutine used
converted to multics May 6.

30UNDARY. DST =
WHICH RUNS FROM (X1,Y1) TO (X2,Y¢Z)

OO0 0 o0 n o0

DOLD IS THE OLD MINIMAL DISTANCE FROM (x0,Y0)
DOLD OR THE DISTANCE FROM (X0,YU)

in main program master,
1977 by H Johnson.

TO THE
Tuo THE SEGMENT
- WHICHEVER IS SMALLER.

itest=((x2-x1)*x2+(y2-y1)xx2)x1300.

if(itest
if(itest

.eq.
.eqg. 0) go to 73

0) dist_master=dold

t=(x1=x0)*(x1=-x2) +(y1=-yQ0)*x(yl1-y2)

testS(x2=x1)**x2+4(y2-y1)*x%x?
t=t/test
XxXt=txx2+(1,-t)*x1
yt=trxy2+(1.,-t)*yl

dist_master=sgqrt((xt=-x0)**x2+(yt-y0)*x*x2)

if(t
if(t

Lt
.gt.

U.)dist_master=sqrt((x1-x0)**x2+(y1-y0)*x*x2)
To)dist_master=sqgrt((x2=x0)**x2+(y2-y(Q)*%x2)

APPENDIX C

if(dold .lt.
73 continue
c
return
end

C *hkkhkhkkxk

END DIST_MASTER **xaxxxxx

161

dist_master) dist_master=dold

FUNCTION NAME: NCROSS_MASTER

Awuthor: Harold Johnson

Purpose of the program: ncross_master determines
whether or not the right horizontal ray from the
center point crosses the line segment that has the

given end points. If it does cross, no/d is increased by
1

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: nx = ncross__master (x1,y1,x2,y2,x0,-
y0,nold)

Arguments:
x1, y1— Coordinates of one end of the segment
y2, y2— Coordinates of the other end of the segment
x0, y0— Coordinates of the center point
nold— The number of crossings before this program

C *xxxxxx NCROSS_MASTER **kkann

nx—The number of crossings after calling this pro-
gram (increases nold by 1 if a crossing occurs in this
routine)

Subroutines called: None

Common data referenced: None

Imput files: None

Output files: None

Arrays used: None

Called by: work_master

Error checking and reporting: None

Constants: None

Program logic:

1. If the segment is nearly horizontal, nx = nold.

2. The horizontal coordinate where the horizontal
crosses the line through the points of the segment
is calculated.

3. When this coordinate is less than x0, nx = nold.

4. Qtherwise, nx = nold + 1.

function ncross_master{(xls,ylsx2,y2+,x0syUonold)

¢ function used
converted to multics May 6.
10=06

¢ NCROSS INCREASES

NGLD BY 1 IF THE SEGMENT FROWM

in main program master
1977 H

Johnson.

(X1,Y1) TO (X2,Y2)

¢ SROSSES THE RIGHT HORIZONTAL RAY FROM (XU0,Y0) .

ncross_master=nold
ifCabs(yl=-y2) .lt.
t=(yd-y1)/(y2-y1)

8 if(taltale os0r. togtol.
5 x=t*x2 + (1.-t)=*x1
if(x Jlt. x0) gyo to 7

.001) go to 7

) go to 7

ncross_mastersncross_master+1

I continue
return

end

C *«kxxisx END NCRUSS_MASTER

Kk ok ok ok ok ok

SUBROUTINE NAME: CNTEST_MASTER

Awuthor: Harold Johnson

Purpose of the program: cntest_master tests whether
the center points are actually within the map outlines.
It measures their distance to the boundary of the
outline and computes the diameter of the outline.

When the point lies outside the outline or is too close
to the boundary of a region whose diameter is not
small, error messages to this effect are sent to the
operator, and the center is written to a file named
doubt.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

162

Operating system: Multics

Calling sequence: call cntest__master

Arguments: None

Subroutines called: work_master, dm__master

Common data referenced: None

Input files: None

Output files: None

Arrays used: xx(6), yy(6)

Cualled by: master

Error checking and reporting: When the boundary
crosses the right horizontal ray from the center an
even number of times, a message that the center does
not lie inside the outline is sent to the operator. When
the center is too close to the edge of a region, a
message about this is sent to the operator. In each
case, the center coordinates are placed in doubt.

subroutine cntest_master
SUSBROUTINE USED IN PROGRAM
UPDATED AS OF DEC, 27, 1976

[}

He

converted to multics
P3PPI ILIPITISPISBCENTER

May 6.

O 0 0 000 006000

dimension xx(6),yy(6)

i01=15

in=32

10=6

in1=34

write(6,v00)
9040 format ("
EQUATE 32 TO THE FILE OF
EQUATE 15 TO THE FILE pousT .
EQUATE 34 TO THe FILE OF CENTERS.,

rewind 3¢
I7T

992 format(1x,7195)

THIS PROIGRAM TESTS wHETHER POINTS CALLED
ARE ACTUALLY INSIDE THEIR MAP OQOUTLINES.

MAP OUTLINES,

GEOINDEX

Constants: None

Program logic:

1. Center header card and coordinates are read. The
center is shifted by 0.0001 in., so that it cannot lie
exactly on a line.

2. Coordinate file is searched for the corresponding
header card.

3. Coordinates are read and work_master and
dm_master are called to compute successive
minimal distances, maximal distance from the ini-
tial coordinate point of the outline (used as an
approximation to the diameter), and number of
crossings that the outline makes over the right-
hand ray from the center.

4. Indicated problems are reported to the user and writ-
ten to doubt.

"MASTER"
JOHNSON

1977 by H Johnson
TEST3333333353333333533335333%%

"CENTER POINTS"

IT ALSO COMPUTES THEIR DISTANCE TO THEIR MAP BOUNDARIES.

THE FOLLOWING CENTERS ARE IN DOUBT™)

COOR~-~

CNTR--

IS ASSUMED THAT THE CENTER DATA AND MAP OUTLINE DATA
ARE IN THE SAME ORDER, AND THAT EACH CENTER BELONGS TO SOME
MAP OUTLINE, BUT IT SKIPS OVER MAP OUTLINES WHICH

HAVE NO DENTER.

read(in1,902,end=99)ifcrifnoceisfcrisfnocenotcronorcesnifc

read(inl1,901)inulls,jnulls,xcensycen

901

[

c ADD
¢ ANY DATA POINT.,

format(2i6,2f6.3)

.0J01 TO XCEN AND YCEN TO MAKE THEM DIFFERENT FROM

c

APPENDIX C 163

xcenzkcen+ 0001
ycen=sycen+,0001

¢ READ THE DATA HEADER CARD

2
902

[
¢ COMPARE

903
50

209
c

o o0 o0

N oo 0 o

19

99433
300

C
c NOW READ
c

read(in,902,end=99)if,ifnosisfrisfnornotsnor,nif
format(7i5)

ncards=isfno/é6

if(6*ncards lt. isfno) ncards=ncards+1

NUMBERS, IF ODIFFERENT,SKIP THIS DATA

if((itc.eqeifl)oand.(isfc.eq.isf).and.(notc.eg.not)) go to 200
do 50 k=1,ncards

read(in,?203)(xx(i),yy(id),i=1,6)

format(12f6.3)

continue

go to 2

continue

IGNORE CENTER FILES FOR SINGLE POINT PLOTS.

if(isfno yt. 2) go to 210
read(in,903) (xx(id,yy (i) ,i=1,6)
go to 1

NOW READ THE FIRST DATA CARD AND BEGIN THE CALCULATIONS.
WE SKIP THE FIRST DATA POINT, IT LOCATES PRINTING FOR
THE ID WUMBERS.

dst=1d0.

Jiam=0.0

nx=d

read(in,9203) (xx(id,yy (i) eoi=1,6)

ie=6

if(isfno lt. 6) ie=isfno

xfirst=xx(2)

yfirst=yy(2)

do 300 k=3,1e

call work_master(xx(k=1),yy(k=1),xx(k)s,yy(k)sxcenrycenrsnxsdst)
diam=dm_master(xx(k=1),yy(k=-1),xfirstsyfirstraiam)
format(fe.3)

continue

xlast=xx(6)

ylast=yy(6)

if(ncards .eg. 1) go to 500

if(ncards .eq. 2) go to 400

IN THE DATA CARDS BETWEEN THE FIRST AND LAST.

ni=ncards-1

do 380 (=2,n1

read(in,9U03) (xx(1)poyy(i),i=1,6)

call work_master(xlastsoylastoxx(1),yy(1),xcensrycens,nx,dst)
diam=dm_master(xlasteylastexfirstoyfirstodiam)

164 GEOINDEX

do 350 k=2.,6
call work_master(xx(k=1),yy(k=1)sxx(k)osyy(k)sxcensycensnxesast)
diam=dm_master(xx(k=1),yy(k=1),xfirstoyfirstediam)
350 continue
xlast=xx(6)
ylast=yy(6)

384 continue

c

¢ NOW READ IN THE LAST CARD

c

400 read(in,903) (xx(1)soyy(id)si=1,6)

ie=isfno-6*(ncards-1)
call work_master(xlasteylastexx(1),yy{(1)sxcensycensnxesdst)
diam=dm_master(xlastsylastoxfirstesyfirstediam)
if(ie .eq. 1) go to 500
do 401 k=2,1e
call work_master(xx(k=1),yy(k=1)oxx(k)osyy(k)osxcensycensnxsdst)
diam=dm_master{xx(k=1)r,yy(k=1)oxfirstoyfirstodiam)
401 continue
(o
500 continue
c
¢ WHEWN THE REGION IS NOT CLOSED wE ADD THE LAST POINT TO CLOSE IT,.
c
test=(xx(ie)~-xfirst)*x*x2+(yy(ie)~yfirst)xx?2
if(test lt. .01) go to 501
call work_master(xx(iedsyy(ied)sxfirstoyfirstexcensycensnxedst)
diam=dm_master{xx(ie),yy(iedosxfirstoyfirstodiam)

NOA4 REPORT THE RESULTS
01 continue

0 Nnx=(-1)**nx

WNHEN WNX=-1 THERE ARE AN ODD NUMBER OF CROUSSINGS, SO THE CENTER IS

INSIDE THE REGION

WHEN NX=1 THERE ARE AN EVEN NUMBER OF CROSSINGS,SO
THE CENTER IS OUTSIDE THE REGION

OO OO0 000000 WMo OO0

991 format(f6.3)
if({nx .eq. =1) .and. (dst .gt. .09)) 4o to 1
if(diam .lt., .3333) 30 to 1
write(6,9%31)
9931 format("Uthe following center is in dJdoubt because ")
if(nx .eg. =-1) go to 70
write(6,9933)
9983 format(" it does not lie inside the ooundary.')
70 if{dst .gt. .09) go to 80
write(ov,9985) diams.dst
9935 format(" the region has diameter ",f6.3," anu the center "/
" 3s ",f6.3," inches from the boundary.")

APPENDIX C 165

80 write(io,905)ift,ifnosisfsrisfnornotsnor,nif

905 format(1x,715)
write(i0,906)xcensycen
format(1x,216.3)
ioarea=40
iycen=ycen*x1000.
ixcen=xcen*1000.
isfno=1

906

write(io1,932)1fsifnosisfrisfnosnotsnor,nif

write(io1,9u7)ixcensiycen
format(12x,216)
go to 1
99 return
end

907

SUBROUTINE NAME: DM_MASTER

Awuthor: Harold Johnson

Purpose of the program: dm_master is used to com-
pute the diameter of an outline. It calculates the
length on one segment and compares it with the
previously calculated diameter.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: diam = dm__master (x1,y1,x2,y2,dold)

Argquments:
x1, y1-Coordinates for one endpoint of a segment
x2, y2—Coordinates for the other endpoint
dold —Previously calculated maximum diameter

Subroutines called: None

Common data referenced: None

Input files: None

Output files: None

Arrays used: None

Called by: cntest_master

Error checking and reporting: None

Constants: None

Program logic:

1. diam is set to dold.

2. The distance between the endpoints is calculated and
compared with do/d.

3. If this distance is more than dold, diam is set to this
distance.

C *hkhkxkkhxk

O a0

function used
converted to multics May 6,

SUBROUTINE DM_MASTER **xxhkkkx

function dm_masteri{xl,yltox2sy2sdold)
in main program master,
1977 H. Johnson
dm_master=dold
test=aos(x1=-x2)+abs(yl-y2)

if(test .gt. dold)dm_master=test

return
end

C **kxhxkx END DM_MASTER #*axakakx

FILE NAME: AREANO

Purpose of the file: areano is a list of true State areas.
master calculates a State area and then reads areano
to find the true area. The ratio of these is used as a
correcting factor in the area calculations for the
outlines of the State.

Format: The kth record of areano contains the true
area, format I6 (integer part), for the State with FIPS
code number k. If no State has State code k, the
record contains a zero.

Arguments: One integer occurs on each record, 16, and
is the integral part of the true State area in square
miles.

Referenced by: master

166 GEOINDEX

areano

51609
586412
0
113909

53104
158693
0
104247

5009
2057
67

58560

58876
0

6450

83557

56400

36291

56290

82264

40395

48523

33215

10577

8257

58216

84068

47716

69686
147138

77227
110540

9304
7836
121666

49576

52586

70665

41222

69919

96981

45333
0

1214

31055

77047

42244
267339

84916

9609

40817
0

68192

APPENDIX C

24181
56154
97914

[=Neleo e e el Bo NeoNeo Ne No No Ne

3435

167

PROGRAM NAME: STATE_OPTIMA

Author: Harold Johnson

Purpose of the program: state__optima reads through
a strdNM file, finds the highest and lowest latitudes,
leftmost and rightmost longitudes, and prints out this
information.

Data base: Geoindex .

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: state__optima

Arguments: None

Subroutines called: open__si.ec, optima, close.ec

Common data referenced: None

Input files: strdNM used on unit 60 (file60)

Output files: Information is printed on the terminal.

state_optima

¢
c

¢ Purpose:
c and Llowest

c most Lloingitudes,
c

c

c

c

H Jonnso
1973

Progyrammer:

dates: July 20,

¢ input file: strdiM

¢ output file: terminal

external ec(descriptors).,
character filex6

dams

c
write(6,910)
910 format(”

read(5,920) state

To read through a strdhnM file,
tatitudess, hleft and right-
and print out this

Arrays used: None
Called by: None
Error checking and reporting: None
Constants: None
Program logic:
1. Prompt:
TYPE THE FEDERAL STATE CODE
NUMBER:
The user’s response is read into state.
The word strd and the value of state are con-
catenated.
4. Call open_si.ec, which opens and attaches strdNM
to file60 for stream input.
Call subroutine optima.
Call close.ec, which detaches and closes file60.
7. End.

@ 1o

o«

find the highest

information.

Type the Federal State Code number:")

168 GEOINDEX

92U format(a2)
encode(file,930) state
933 format("strd",al)
c
call ec ("open_si”,"60",file)
c

call optima
call ec ("close","60™)

end

SUBROUTINE NAME: OPTIMA

Author: Harold Johnson

Purpose of the program: optima reads through the ra-
dian coordinate files and determines the uppermost,
lowermost, leftmost, and rightmost coordinates for
each map boundary.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call optima

Arguments: None

Subroutines called: dms

Set ncards equal to isfno divided by 3.

Read the first record.

Ignore the first point because it is the location of the

written if numbers.

5. Compare the points to find the rightmost, leftmost,
topmost, and lowermost points.

6. Put the coordinates into integer format for packed
writing.

7. Call function dms.

8. The following will be output on the screen:

STATE = nor, OUTLINE = if, SUB = isf

DEGREES, MINUTES, SECONDS

Ll A

Common data referenced: None NORTH
Input files: strdNM MAXIMUM ideg(1) imin(1) iseq(1)
Output files: Information is printed on the terminal. SOUTH ideg(2) min(2) isec(2)
Arrays used: x(3), Y(3), X1(4), y1(4) ix1(4), iy1(4), 2(4), WEST ideg® imin(8) isec(3) -
ideg(4), imin(4), isec(4) EAST deg(4) min(4) 1sec(4)
Called by: state_optima
Error checking and reporting: None 9. This organization is as in the comxNM files: upper
Constants: None latitude, lower latitude, left longitude, and right
Program logic: longitude.
1. The header record of the strdNM file is read. 10. Return control to calling module.

subroutine optima

purpose: to read through the radian coordinate files and
determine the upper, lLower, left, and right most
coordinates for each map boundary.

input file number 60 is the standrd coordinate file.
outpue file number 30 is a file of max, mins,

O 00 00 0o o0

c
double precision x,yrxlryltsrz

dimension x(3), y(3), x1(4), y1(4), ix1(4), iy1(4)
dimension 2(4), ideg(4), imin(4), isec(4)

c

10 read(60,910,end=10U0) 1f, ifno, isf, isfnornotsnor,nif
921J format(7i5)

APPENDIX C 169

c

c

ncards = isfno/3

if(3*xncards ,lt, isfno) ncards = ncards + 1
c

read(60,920)(x(j)oy())s}=1,3)
92U format(6f12.9)
c
do 15 3 = 1, &
x1(j) = x(2)
15 y1(j3) = y(2)
¢ we don't start with the first point, because it is
¢ the logation of the written if numbers,
j0 = 2
17 do 80 j = jU., 3
if(x()) .eqe Je s0r, y(j) .ege. 0.) go to 9J
c
c x1(¢1)s, y1(1) is the right-most point.
if(x1(1) .ge. x(3)) go to 20
x1(1) = x(j)
y1(1) = y(j)
20 continue
c
c x1(2), y1(2) is the left-most point.
if(x1(2) Jle. x(j)) go to 30
x1(2) = x{(j)
y1(2) = y(j)
30 continue
c
¢c x1(3), y1(3) is the top-most point.
if(y1(3) .ge. y(}))) go to 40
y1(3) = y(j)
x1(3) = x(j)
40 continue
c
¢ x1(4), y1(4) is the lowest point,
if(y1¢4) .le. y(3)) go to 80
y1(4) = y(j)
x1¢4) = x(3)
80 continue
c
ncards = ncards - 1
if(ncards .lt. 1) go to 90
read(60,920) (x(3)ry(j)sr}=1,3)
ji0 = 1
go to 17
c
90 isfno = 2
c
¢ put the coordinates into integer format for packed
c writing.
c
do 200 j = 1.4

ix1(3) = idint(x1())*(10,0%%x9) + .5)

170 GEOINDEX
200 iy1(j) = idint (y1(j)*(10,0%x9) + ,5)
c
2(1) = y1(3)
2(2) = y1(4)
2(3) = x1(1)
2(4) = x1(2)
do 106 k = 1, 4
2(k) = 2(k)*180./3.141592653
call dms(z(k),ideg(k)s,imin(k)s,isec(k))

106 continue

c

isf
"

rd

it,
'2i5,

Wwrite(6,944) nor,
format (" state =
write(6,950)

format(14x,"degrees minutes secon
write(6,960) ideg(1),imin(1),isec
format(" north maximum ",13,18,14
write(6,970) ideg(2),imin(2),isec
format(" south ",13,18,1
write(6,9840) ideg(3),imin(3),isec
format(" west ",13,1801
write(6,970) i1deg(4),imin(b4),isec
99y format(" east 13,1801
¢ this organization in the comx

940 outline
9549
960
970

989

is as

¢ upper latitude, lower latitude, Lft
¢ longitude.

c

930 format(4d2i.9)

c

go to 10

c

1000 continue

return

'2i15,", sub ",i5)
ds™)
(1)

8)

(2)

8)

(3)

3)

(4)

8)
files:

lonyitude, right

EXEC_COM NAME: OPEN_SILEC

Author: Harold Johnson
Purpose of the program: open_si.ec attaches and opens
a file for stream input.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call ec (“open__si”,“60” file)
Arguments:
60—Unit number
file—Name strdNM

gcommand_Line off
10 attach filesl vfile_
10 open filedl s

&2 —-append

Subroutines called: io_attach, io_open
Common data referenced: None

Input files: strdNM

Output files: None

Arrays used: None

Called by: state_optima

Error checking and reporting: None
Constants: None

Program logic:

1. Call io to attach file60 via vfile__ to strdNM.
2. Call io to open file60 for stream input.
3. Return control to the calling module.

-ssf

APPENDIX C

EXEC_COM NAME: CLOSE.EC

Awuthor: Harold Johnson

Purpose of the program: close.ec detaches and closes
the file.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call ec (“close”,“60”)

Arguments: 60—Unit number

Subroutines called: io_detach, io_close

&command_Lline off
10 close fileg
io detdch filegl

171

Common data referenced: None
Input files: strdNM

Output files: None

Arrays used: None

Called by: state_optima

Error checking and reporting: None
Constants: None

Program logic:

1. Call io to detach file60.

2. Call io to close file60.

3. Return control to calling module.

PROGRAM NAME: ADDRAD

Awuthor: Harold Johnson
Purpose of the program: addrad inserts the correct
values for the areas, the latitude and longitude coor-
dinates for the centers and for the north, south, east,
and west boundaries of the outlines for each map
reference contained in strgNM files.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call addrad
Arguments: None
Subroutines called: ibound_addrad, srch20_addrad,
srch30__addrad, srch40_addrad, closer, ftnumber,
center__addrad, optima__addrad
Common data referenced: None
Input files:
strgNM used on unit 10 (file10)
Created by: concat
measNM used on unit 20 (file20)
Created by: master
cordNM used on unit 60 (file60)
Output files:
comxNM used on unit 30 (file30)
Created by: optima__addrad
ctrdNM used on unit 40 (file40)
Created by: center__addrad
redyNM used on unit 50 (file50)
Created by: addrad
Arrays used: iarea(8), iaunit(7), inlat(12), islat(12),
iwlong(12), ielong(12), iclat(12), iclong(12),
ifile(12117)

Called by: None

Error checking and reporting: In subroutines

Constants: None

Program logic:

1. The user is prompted for the 2-digit FIPS code of the
State being processed.

2. Using this assoc will attach strgNM to Fortran
file10, measNM to file20, comxNM to file30,
ctrdNM to file40, cordNM to file60, and redyNM
to file50. comxINM is the north, south, east, and
west latitude and longitude file; ctrdNM is the
latitude and longitude file of center points; redyNM
is the output file ready for final input to the
GRASP system.

3. Center_addrad is called to compute a center point
for each outline in cordNM and store these in
ctrdNM.

4. Optima_addrad is called to determine the extreme
north and south latitudes and east and west
longitudes for each outline in cordNM.

A record from strgNM is read.

6. Subroutine ibound__addrad is called to determine
the if and isf for the map outline of this reference
data.

7. srch20_addrad is called to search file20 for the area
of the corresponding outline. This is inserted in the
record from strgNM.

8. srch30_addrad and srch40_addrad are called to
locate data in comxINM and ctrdNM belonging to
this outline. This is inserted in the same record.

9. The record is written to redyNM. Control returns to
step 2.

&

172 GEQINDEX

C *xkahkxkx ADDRAD **hk k&%

character file*4, mode*4, statex?l, outfilexb

PROGRAM ADDRAD
UPDATED AS OF DEC. 17, 1976

He JOHNSON

THIS PROGRAM OPERATES ON THE FILES STRGNM CUNTAINING THE OUTPUT

VECTORS OF THE CONCAT PROGRAM.,

THE CREATE PROGRAM,

oEFORE THEY ARE USED AS INPUT TO

$33333333855333F5 5533535535335 5955535355553 58353533335333535%3

WHAT THIS PROGRAM DOES IS TO INSERT CORRECT AREAS, LATITUDE AND

LONGITUDE COURDINATES FOR THE
LONGITUOES OF THE BOUNDARIES.

CENTERS +N+sS,LATITUDES AND E,W.,

(IN REFNM ONLY ONE AREA,CENTER AND 30UNDARY IS GIVEN PER "IFf")

FILE 10
FILE 20
FILe 30
FILE 40

INPUT STRGNM WHICH WAS PRODUCED BY CONCAT.

AREA FILE PRODUCED BY "MASTER"™ PROGRAM, CALLED MEASNM,
NeS LATITUDE 7E,W LONGITUDE FILE CALLED COMXNM.

CENTER LONGITUDE-LONGITUDE FILE CTKRDNM,

THE OUTPUT FILE PRODUCED BY THIS PROGRAM FGR CREATE:
FILE 50 = THE OUTPUT FILE REDYNM.

THE FOLLOWING VALUES ARE THE STARTING POSITIONS FOR THE VALUES OF
I80UNDs AREA, AUNIT, NLAT,SLAT,WLONG,ELONU,CLAT, CLONG AS

DETERMINED BY THE FILE CALLED

c
c
c
c
¢
c
c
c
c
c
c
c
c
c
c THE FOLLOWING FILES ARE REQUIRED FOR INPUT:
c
c
c
c
c
c
c
c
c
c
c
c
c

"MATRIX".

3PP 93P PTPIPPIIEPPPPTIPIETPP PSPPI PETIPEIFTEIDIITILIIITIESPITIPEIISIII535334%5%
dimension iarea(8),1aunit(7),inlat(12),islat(12),iwlong(12)

dimension ielong(12)

dimension iclat(12),iclong(12),ifile(1211)
data nbound/1160/,nareal/d869/snaunit/877/+,nnlat/3384/snslat/896/
Jata nwlong/908/s,nelony/920/+,nclat/932/snclony/944/snrec/1211/

NOTICE THE DIMENSION OF IFILE
CAANGED IF NREC IS CHANGED.

O 000

” ” ” ” "

data iaunit/"s".,"g".".",
c
write(6.,910)
910 format(" ENTER THE 2-DIGIT CODE
read(5,92U) state
920 format(al)
encode(outfiler925)state
925 format("strg”s,a2)
mode = "si "
call ftnumber(lJdsoutfilermode)
encode(outfile,926)state
926 format("cord",a?)
call ftnumver(oUsroutfilesrmode)
encode(outfiler927)state
927 format("meas",al)
call ftnumber(2Jdsoutfilesrmode)

IS THE SAME AS NREC, WHICH MUST Bt

"I"k"I"m"I"."/

FOR THE STATE BEING PROCESSED™)

APPENDIX C

encode(outfiler,93U)state
930 foramat{"comx",al)
mode = "sio "

call ec ("open_si10","30",0outfile)
encode(outfile,932)state
932 format(”ctrd",al)

caltl ftnumber(40,0outfilermode)

encode (outfile,¥37)state
937 format("redy'",ac)
mode = "so "

call ftnumber(SQ0scutfilermode)

call center_addrad
this routine computes a center point in radians for each
outline.

[o BN o]

call optima_addrau
c this routine computes the extreme north and south latitude for
¢ each outline, and the extreme east and west longitude.
c

10 read(l1u,740,end=1000) (ifile(j)s)=1snrec)

944 format(3ddal)

c

c WwE HAVE READ ONE RECORD OF LENGTH NREC FROM STRGNM.

call ibound_addrad{(ifile,nboundsifeisfenrec)

(THIS ROUTINE "IGOUND"™ READS IFILE FROM NBOUND TO WBOUND+6 TO
c DETERMINE THE "IF*"™ AND "ISF" OF THE MAP QUTLINE WHICH IS THE OUuTLI
c E
C MAP FOR THIS REFERENCE, IF ONE EXISTS. IF = 0 WHEN NONE EXISTS.
C
if(it .gt. J) go to 20
go to 130
C
20 call srch20_addrad(if,isf,iareariflag0)
if(iflag2d .eq. 1) go to 50
c THIS ROUTINt SEAKCHES FILE 20 TO LOCATE THE AREA OF THE OQUTLINE
C 1
c HAVING THIS IF AND ISF., IAREA IS THE LEFT-JUSTIFIED, DECODED AREA
C FORMAT &A1 .
c
do 30 k=1,8
30 ifile(nareat+k=-1)=iarea(k)
c
c NEXT, INSERT "S&.KM."™ IN IFILE.
do 4U k=1.,7
40 ifile(naunit+k-1)=iaunit(x)
c
50 call srch3U_addrad(if,isfr,inlat,islatsiwlongerielong,iflag30)
if(iflajyg30 .eq. 1) yo to 70
c THIS SEARCHES THROUGH FILE 30 FOR THE LATITUDE-LONGITUDES, DECODES
c THEM INTO A1 FORMAT,

do 60 k=1,12
ifile(nnlat+k=1)=inlat (k)
ifile(nslat+k=-1)=islat (k)

173

174

GEOINDEX

ifile(nwlong+k-1)=iwlong(k)

60 ifilel(nelonyg+k-1)=ielony(k)

c

70 call srch4U_addrad(ifsr,isfr,iclatsiclongrsiflagst))
1f(iflagsld .eq. 1) go to 100

c THIS ROUTINE SEARCHES FILE 4U FOR THE LATITUDE-LONGITUDE OQF THE

CENTER,

do U k=1,12
1filelnclat+k=1)=iclat (k)

&0 ifile(nclong+k=-1)=iclong(k)

c

1049 write(S5U,94u)(ifile(j),j=1snrec)
30 to 10

c

1030 call closer(10)

call closer(20)
call closer (3U)
call closer (40)
endfile 50
¢ this
¢ otherwise be
c

lost.

call closer(50)
call closer(oed)
c
stop
end

is supposed to put a final blank record which might

SUBROUTINE NAME: OPTIMA_ADDRAD

Awuthor: Harold Johnson

Purpose of the program: optima_addrad reads through
the radian coordinate files and determines the upper-
most, lowermost, leftmost, and rightmost coordinates
for each map boundary.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call optima__addrad

Arguments: None

Subroutines called: None

Common data referenced: None

Input files: cordNM used on unit 60 (file60)

Output files: file30— a file of maximums and minimums

Arrays used: x(3), y(3), x1(4), y1(4) ix1(4), iy1(4)

subroutine optima_addraa

c
¢ purpose:
c determine the upper, lLower, left,

C
c
C

Called by: addrad
Error checking and reporting: None
Constants: None
Program logic:
The header record of the coordinate file is read.
Set ncards equal to isfno divided by 3.
Read the first record.
Ignore the first point, because it is the location of the
written if numbers.
Compare the points to find the rightmost, leftmost,
uppermost, and lowermost points.
6. Put the coordinates into integer format for packed
writing.
7. Write the upper latitude, lower latitude, left
longitude, and right longitude to file30.
8. Continue steps 1 through 7 until the end of file is
reached.

N

o

to read through the radian coordinate files and

and right most

coordinates for each map boundary.

APPENDIX C 175

¢ input file number 60 is the standrd coordinate file.,

¢ outpue file number 30 is a file of max, mins.,

c

double precision xsysxl,y1l

dimension x(3), y(3), x1(4), y1(4), ix1(4), iy1(4)

rewind 60

c

rewind 30

10 read(60,910,end=1000) if, ifno, isf, isfnosnots,nor,nif
910 format(7i5)

c

c

ncards = isfno/3

if(3*ncards .lt. isfno) ncards = ncards + 1
c

read(60,920)(x(j)sy(j)erj=1,3)
920 format(6f12.9)
c
do 15 j) = 1, 4
x1(j) = x(2)
15 y1(3) = y(2)
¢ we don't start with the first point, because it is
¢ the location of the written if numbers,
j0 = 2
17 do 80 j = 30, 3
if(x(j) .eqe. 0. .0r. y(j3) .eq. 0.) go to 90
c
¢ x1¢1), y1(1) is the right-most point,
if(x1(1) .ge. x(j)) go to 20
x1(1) = x(j)
y1(1) = y(j)
20 continue
<
¢ x1€(2)s y1(2) is the left-most point.
if(x1(2) .le. x(j)) go to 30
x1(2) = x(j)
y1(2) = y(j)
30 continue
c
¢ x1(3), y1(3) is the top-most point.
if(y1(3) .ge. y(j)) go to 40
y1(3) = y(j)
x1(3) = x(j)
40 continue
c
c x1(4), y1(4) is the Llowest point,
1f(y1(4) .le. y(j)) go to 80
y1(4) = y(3)
x1(4) = x(j)
80 continue
c
ncards = ncards - 1
if(ncards .lt. 1) go to 90
read(60,920)(x(jley(jlsj=1,3)
i0 =1

176 GEOINDEX
go to 17
c
90 isfno = 2
write(30,910) if,ifnosisfrisfnosnotsnorsnif
c
C put the coordinates into integer format for packed
¢ writing.
c
do 200 j3 = 1,4
ix1(j) = idint(x1(j)I*x(10,0%*9) + .5)
200 iy1(j3) = idint (y1(j)*(10,0%x*9) + _5)
t
write(30,930) y1(3),y1€(4),x1(1),x1(2)
¢t this organization is as in the comx files:
¢ upper latitude, lower latitude, Lft longitude, right
¢ longitude.
c
930 format(4d20.9)
c
go to 10
(o

1000 endfile 30
rewind 30
return

end

SUBROUTINE NAME: IBOUND_ADDRAD

Awthor: Harold Johnson
Purpose of the program: ibound_addrad reads the
characters in the vector ifile to interpret the
associated if and isf as integers.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call ibound__addrad (ifile,nbound,if,-
isf,nrec)
Arguments:
ifile—A vector of characters from one record of
strgNM
nbound-The number of the element of ifile that
preceeds the data containing if and isf characters

* ok ok ok ok ok Kk

(o]

SUBROUTINE IBOUND_ADDRAD

subroutine i1bound_addrad(
SUSBROUTINE USED IWN MAIN PROGR
UPDATED AS OF DEC, 27, 1976

converted to Multics May 21, 1977

OO o0 00

if-The identification number for the current
reference outline

isf-The subidentification number for the current
reference outline

nrec—The length of ifile

Subroutines called: decoder__addrad

Common data referenced: None

Input files: None

Output files: None

Arrays used: ifile(nrec), num(6)

Called by: addrad

Error checking and reporting: None

Constants: None

Program logic:

1. The pertinent characters are read from ifile, and
decoder__addrad is called to interpret them as in-
tegers. These are summed with suitable powers of
10 to output the corresponding if and /sf.

*k k k ok k Kk
ifilesnboundsifrisfonrec)
AN "ADDRAD"

He JOHNSON

by H Johnson

APPENDIX C

dimension
data iblank/"™ "/

THE

FOR "™ISF",

O 00 o000 o0o0

A BLANK IS ENCOUNTERED.
Jo 10 k=1,6
iblah=ifile(nbound+k=1)
if(ifile(nbound+k=-1) .eq.

THE PJURPOUSE OF THIS ROUTINE IS TO READ CHARACTERS
TO DETERMINE THE If, ISF OF THE BOUNDARY FOR THIS MAP
CHARACTERS CONSIST OF 1-3 NUMERALS FOR

WE FIRST READ THESE NUMBERS INTO A VECTOR NUM(K).,

177

1file(nrec),num(6)

IN IFILE

"IF" FOLLOWED BY 2

STOPPING WHEN

iblank)go to 2V

call decoder_addrad(ifile(nbound+k=-1),numl)

10 num{k)=numi

20 if(k .gt. 1)go to 25

c WHEN THE RECORD 1S ENTIRELY BLANK WE RETURN O FOR

if=0
isf=0
return

C READ THE LAST
25 klast=k=1
isf=0
go 30 j=1.,2

IF AND ISF,

TwO NUMBERS INTO ISF:

isf=isf+num(klast=j+1)*x10xx(j-1)

30 continue

(9]

c READ THE FIRST NUMBERS INTO IF:

klast=sklast~¢
if=0
40 50 j=1,klast

50 if=1f+num(klast=j+1) *10*x()~1)

return
end
C **xkxkkkx END * ok ok ok ok kX

IBOUND_ADDRAD

SUBROUTINE NAME: DECODER_ADDRAD

Author: Harold Johnson

Purpose of the program: decoder_addrad is used to in-
terpret integer characters and output them as in-
tegers.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call decoder__addrad (iblah,iy)

Arguments:
iblah-Integer character
iy—Integer number

Subroutines called: None

Common data referenced: None

Input files: None
Output files: None
Arrays used: ino(10)
Called by: ibound_addrad
Error checking and reporting: When iblah is not the
character for any single integer, a message to that ef-
fect is written to the user.
Constants: None
Program logic:
1. iblah is compared with each of the integer characters
0 through 9 until a match is found.
2. If no match is found, a message is sent to the user
along with the character in question.
3. If a match is found on the nth test, iy is equated to »
-1.

178

subroutine decoder_addrad(iblahsiy)
c

¢ subroutine used in addrad

¢ Wwritten by H Johnson August 22+
c

dimension ino(10)

GEOINDEX

1977

data 1.ﬂO/"O"’"""l"Z"I"3"1"4"1"5"'"6"1"7"'"8"1"9"/
c

do 10 n = 1,10

if(iolah .eg. ino(n)) go to 20

10 continue
write(6,913)iblah
910 format(" there
return
c

20 iy =
return
end

n=-1

1s no way to decode

iblah = ",al)

SUBROUTINE NAME: SRCH20_ADDRAD

Author: Harold Johnson
Purpose of the program: srch20_addrad searches
through the file number 20, measNM, to find that
record with an assigned if and isf. It returns the area
written there in character form.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call srch20_addrad (if,isf,iarea, iflag20)
Arguments:
if—The reference number for an outline
isf—The subreference number for an outline
iarea—An 8-character vector giving the area for an
outline
iflag20— A flag that indicates by the value 1 that no
area was found in measNM for this outline
Subroutines called: icoder__addrad
Common data referenced: None
Input files: measNM used on unit 20 (file20)

C *%xxxxkx SYBROUTINE SRCH2U_ADDRAD

Output files: None

Arrays used: iarea(8)

Called by: addrad

Error checking and reporting:. When no record in

measNM can be located that has assigned if and isf, a
message to that effect is sent to the operator.

Constants: None

Program logic:

1. A record from measNM is read, giving its value for
if, isf, area.

2. When this record indicates that it is beyond the
record we seek, file20 is rewound and control
begins at step 1.

3. Reading begins again, and this time if a record is
read that should be beyond the assigned if and isf,
the error message is written and the subroutine
returns.

4. When a match is found, the area value is decoded into
character format, along with the decimal point, and
left-justified into iarea. iffag20 is set at 0.

* ok ok ok &k k ok

subroutine srch20_addrad(if,isfriareariflagld)

UPDATED AS OF DEC. 27, 1976

converted to Multics mMay 21,

TO MATCH THE NUMBERS

O OO0 0000000

SUBROUTINE USED IN MAIN PROGRAM
H.

"ADDRAD"
JOHWSON

1977 H Johnson
THIS ROUTINE SEARCHES THROUGH THE AREA FILE 20 TO LOCATE AN If, IS

GIVEN IN THE CALL.

APPENDIX C

dimension iarea(s)
data

1flagl2id = 0

179

idot/"."/sizero/"0"/,siblank/" "/

10 reau(20,v0Ur,end=45)ifl1,1sf1sareaq

900 format(2i15,f8.1)
if(ifl ,eq. if .and.,
ififl .g9t. if Lor.,

packspace 2uU

isfi
(i f1

.eq.
Q. 1°f

isf) go to 100

.and. 1sfl1 ,gt, isf)lrewind ZU

40 read(20,900s,end=45)ifl1,isf1,area

if(if ,eg. if1 .and.
if(if1 Jlt. if .or.
45 write(6,910)1f,isf
910 format (" THERE IS
rewind 29
iflag2l = 1
return
area=area+.1
do 1uU5 k=0,96
f=area/1TU0.x*x

(if1

100

NO AREA WITH IF =

isf.eq.isfl1)dyo to 104
.€q. if

.and. isfl .lt. isfl))go to 40

",15," AND ISF = ",i5)

ifx=ifix((f-float(ifix(f)))*x10,)

call
iarea(7-k)=iplah
iarea(§)=iarea(7)
iarea(7)=1dot

105

LEFT-JUSTIFY
Jo 135 k=1,06
if(iarea(l)
g0 130 L=1,7
iarea(l)=iarea(l+1)
iarea(d)=iolank
continue
continue
iflag20 = 0
return
end
C **xkxxxx EiND SRCHZU_ADDRAD

c NOW»

€,

130

135
149

kk kkkkh

icoder_addrad(iblahs,ifx)

izero)go to 14J

SUBROUTINE NAME: ICODER_ADDRAD

Awuthor: Harold Johnson
Purpose of the program: icoder_addrad determines
what character corresponds to a given input integer.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call icoder__addrad (iblah,iy)
Arguments:
iblah—The output character that symbolizes the in-
teger iy
iy —The input integer
Subroutines called: None

Common data referenced: None
Input files: None
Output files: None
Arrays used: ino(10)
Called by: ibound_addrad, rconv_addrad, srch20__
addrad
Error checking and reporting: When iy is not an integer
between 0 and 9, an error message is sent to the
operator.
Constants: None
Program logic:
1. In ado loop, iy is compared with each integer from 0
to 9. When a match is made, the correct character
is placed in iblah.

180

subroutine
c

C subroutine used
c written by n.
c
dimension
data
c

do 10 n =
1f(iy .eqe.
10 continue

c

write(6,910)14y

91U format(" THERE
return

c

20 iblah =
return

end

icover_aadraaf{iblah,iy)

in aadrad

johnson May 21, 1977

ino(10)

1, 10
n-1) go to 20

ino(n)

1no/"U".’."‘"’"Z"’"5”’“4“’”5”’“0”’

IS NO WAY TO ENCODE 1Y =

GEOQINDEX

"7"'"8"’"9"/

",13)

SUBROUTINE NAME: SRCH30_ADDRAD

Awuthor: Harold Johnson
Purpose of the program: srch30_addrad searches
through file30 for a record that matches an assigned if
and isf. It returns values in character format.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system. Multics
Calling sequence: call srch30_addrad (if,isf,inlat,islat,-
iwlong,ielong,iflag30)
Arguments:
if - Reference identification number
isf—Subidentification number
inflat—Vector containing the characters of the latitude
of the most northerly point of the outline
islat— Vector containing the characters of the latitude
of the most southerly point of outline
iwlong— Vector containing the characters of the
longitude of the most westerly point of the outline
ielong—Vector containing the characters of the
longitude of the most easterly point of the outline
iflag30— Flag indicating whether or not the search
was successful
Subroutines called: rconv__addrad, read2_addrad
Common data referenced: None

C **xkkuxx SUBROUTINE SRCH30_ADORAD

Input files: comxNM used on unit 30 (file30)

Output files: None

Arrays used: inlat(12), islat(12), iwlong(12), ielong(12)

Called by: addrad

Error checking and reporting: When no match is found,

this is reported to the operator.

Constants: None

Program logic:

1. A record in file30 is read to determine an if7 and
isf1.

2. If a match with the assigned if and isf is found,
rconv_addrad is called to convert the data into
degrees, minutes, and seconds in character form.
Then control returns to the calling program.

8. If the read record in file30 seems to be farther along
than the assigned if, isf indicated, file30 is re-
wound and step 1 is initiated, with a flag indicating
that this has occurred. If that flag was already set,
the error message is written to the operator that no
record exists in file30 with the if, isf, and the
routine ends.

4. A second record is read and compared with the
assigned if, isf, and this is repeated until the ex-
pected position of that record is passed. Then the
error message is written.

5. When no record is found, iflag30 is set to 1. Other-
wise, it is set to 0.

dok ok ok ok ok ok

subroutine srch30_addrad(if,isfrinlatsislatr,iwlongrielongsif

Lag30)

c SUBROUTINE USED IN THE MAIN PROGRAM "ADDRAD"

c UPDATED AS OF DEC, 27, 1976
C

He

JOHNSON

APPENDIX C

converted to Multics May 21,

181

1977 H Johnson

THIS ROUTINE SEARCHES THE LATITUDE LONGITUDE FILE 30 FOR THE RECOR

PROGRAM,
VALUES ON THE NEXT CARD.

AND

c
c

c

c

c HAVING
¢

c

c RETURNS,
c

IF AND ISF THE SAME AS THE ONES SUPPLIES BY THE CALLING
WHEN IT FINDS THEM IT READS THE NLAT,SLAT,WLONG,ELONG
ENCODES THEM TO INLAT,ISLAT,IWLONG,IELONG

dimension inlat(12),islat(12),iwlong(12),ielong(12)
double precision ulatseslatswlongrelong

¢ FIRST, SEARCH FOR THE ASSIGNED IF AND ISF.
10 call readl_aadrad(iflsisflsulatsslatswlongrelongeskflag)
if(kflag .egq. 1) go to 45
¢ THIS READS 2 CARDS, A HEADER CARD FOLLOWED BY COORDINATES. IT
¢ RETURNS THE IF AND ISF FROM THE HEADER CARD.
c
if(if1 .eg. if .and., isfl .eq. isflgo to 100
if(if1l .gt. if .or. (if1 .eg. if .and. isfl .,gt. isf)lrewind 30
40 call read2_addrad(ifls,isfl,ulatsslatswlongrelongskflag)
if(kflag .eqe 1) go to 45
if(if .eq. 1f1 .and. isf .eg. isfl)go to 100
if(if1 .lt., if .or. (if1 .eq. if .and. isfl .lt. isfl)lgo to 40
45 write(6,910)if,isf
910 format (" THERE IS NO COMX RECORD WITH IF = ",i5," ISk = ",i5)
rewind 30
iflag30 = 1
return
100 continue
¢ AT THIS POINT THE NUMBERS ULAT,SLAT,WLONG,ELONG MUST BE CONVERTED
c 0
C DEGREES, MINUTES AND SECONDS AND ENCODED.
call rconv_addrad(ulats,inlat)
call rconv_addrad(slatesislat)
call rconv_addrad(wlongsiwlong)
call rconv_addrad(elounygsielong)
iflag30 = 0
return
end

¢ *%xwxkx END SRCH30_ADDRAD #xxkkws

SUBROUTINE NAME: RCONV_ADDRAD

Awuthor: Harold Johnson

Purpose of the program: rconv_addrad decodes a
12-digit floating point number into characters and
writes them to a vector, one character put in each ele-
ment of the vector.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call rconv__addrad (radian,ifile)

Arguments:
radian— A floating point number to be decoded
ifile— A 12-element vector, which is to contain the

decoded digits of radian as characters

Subroutines called: dms, icoder__addrad

Common data referenced: None

Input files: None

Output files: None

182 GEOINDEX

Arrays used: ifile(12) 2. dms is called to convert these degrees to degrees,
Called by: srch30__addrad, srch40_addrad minutes, and seconds, I format.

Error checking and reporting: In subroutines 3. These integers are written into ifile one at a time,
Constants: None with blanks in place of leading zeros. icoder_ad-
Program logic: drad is used to convert single integers to
1. radian is converted to degrees. characters.

¢ **kkxxx SUBROUTINE RCONV_ADDRAD #xxhkux
subroutine rconv_addrad(radians,ifile)
SUBROUTINE USED IN MAIN PROGRAM "ADDRAD"
UPDATED AS OF DEC. 27, 1976 H. JOHNSON
converted to Multics May 21, 1977 h. johnson

OO0 00

double precision radians,x.pi

dimension ifile(12)

data pi/3.,16159265358979323842643383279/
data iblank/*" "/

data izero/"0"/

THIS ROUTINE CONVERTS THE RADIAN ANGLE "RADIAN" INTO DEGREES.,
MINUTES AND SECONDS, PACKING THEM INTO THE ARRAY IFILE.

o o0 0o 0

x=dabs(radian*180,./pi)
call dms(xs,idegeriminsisec)
991 format(1x,317)
do 10 j = 1,3
iy = i1deg/(10%%x(3~-3))
call icoder_addrad(iblah,iy)
ifile(j) = iblah
1y = iy*x(10%*x(3-3}))
10 ideg = ideg - iy
if(ifile(1) .ne. i1zero) go to 15
ifile(1) = iblank
if(ifile(2) .ne. izero) go to 15
ifile(2) = iblank
if(ifile(3) .ne. i1zero) go to 15
ifile(3) = iblank
15 continue
c
do 20 j = 1, 2
iy = imin/(10*%(2~3))
call icoder_addrad(iblah,iy)
ifite(3+3) = iblah
iy = 1y*x(10%%(2-3))
20 imin = imin =iy
if(ifile(4) .ne, izero) go to 25
if(ifile(5) .ne. izero) go to 25
25 continue
c
do 30 j = 1, 3
iy = isec/(10**x(3-3))
call icoder_addrad(iblahsiy)
ifile(S5+j) = iplah

APPENDIX C

iy = iy*x(10**(3-3))

30 isec = isec - iy
if(ifile(6) .ne. izero) go
if(ifile(?) .ne. i1zero) go
if(ifile(8) .ne. izero) go
35 continue

c

do 40 j = 9,12

40 ifile()) = iblank

995 format(1x,12al)

return

end

C *xkkxax END RCONV_ADDRAD **xaxuwn

to 35
to 35
to 35

183

SUBROUTINE NAME: DMS

Awuthor: Harold Johnson

Purpose of the program: dms converts a double-
precision degree number to three integers represen-
ting degrees (between 0 and 360), minutes, and
seconds.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call dms (x,ideg,imin,isec)

Arguments:
X— A double-precision floating point value for degrees
ideg— An integer representing the degrees in x
imin— An integer representing the minutes in x

C **xxxxkx DMS FUNCTIOWN **hkkak
subroutine dms(xsidegsiminsisec)
double precision xsy

y = 360.

x = dmod(xey)

ideg = 1fix(sngl(x2)

x = x - dfloat(iaey)
imin = ifix(sngl(6d.%x))
x = x*60., =-dfloat(imin)
isec = 1fix(sngl(60.*x))
return

end

C **xkkxkk END DMS FUNCTION *aaxdhix

isec— An integer representing the seconds in x

Subroutines called: None

Common data referenced: None

Input files: None

Output files: None

Arrays used: None

Called by: rconv__addrad, optima

Error checking and reporting: None

Program logic:

1. x is reduced modulo 360.

2. The integer part of x is taken for ideg.

3. ideg is subtracted from x, the result multiplied by 60,
and its integer part is imin.

4. imin is subtracted, the result is multiplied by 60, and
its integer part becomes isec.

SUBROUTINE NAME: READ2__ADDRAD

Author: Harold Johnson

Purpose of the program: read2__addrad is used to read
from the file comxNM the values for the latitudes and
longitudes and the values for if and isf.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics
Calling sequence: call read2__addrad (if1,isf1,ulat,slat,-
wlong,elong, kflag)
Arguments:
if1—The if of the record from comxNM
isf1—The isf of the record
ulat—The northernmost latitude
slat—The southernmost latitude
wlong—The westernmost longitude

184

elong—The easternmost longitude
kflag—A flag to indicate that the end of comxNM has
been sensed
Subroutines called: None
Common data referenced: None
Input files: comxNM used on unit 30 (file30)
Output files: None

C *xxxxxx SUBROUTINE

subroutine

GEOINDEX

Arrays used: None

Called by: srch30_addrad

Error checking and reporting: None

Constants: None

Program logic:

1. file30 is read according to its preassigned format.
When the end of the file is sensed, kflag is set to 1.

READZ2_ADDRAD *xxhkwn
read2_addrad(iflsisfl,ulatsstatewlongrelonygekflay)
SU3RIOUTINE CALLED BY SRCH3J IN MAIN PROGRAM "ADDRAD"

He JOHNSON

1977 H Johnson

c
c UPDATED AS OF DE(. 27+ 1976
¢ converted to multics May 21.
c
double precision ulatesslateswlongerelony
read(3U,700,end=100)1f1,ifnosisf1
90U format(315)
read(30,910+,end=100)ulatsslatewlongrelony
910 format(4d20.9)
kflag = J
return
100 kflag = 1
return
end

C *hkxkhkkk

END READZ_ADDRAD **kkaxx

SUBROUTINE NAME: SRCH40_ADDRAD

Author: Harold Johnson
Purpose of the program: srch40_addrad searches
through file40 for a record having an assigned if and
isf.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call srch40__addrad (if,isf,iclat,iclong,-
jflag)
Arguments:
if—The assigned reference identification number
isf—The assigned reference subidentification number
iclat—A 12-character vector containing characters
that represent the latitude of the center point in
degrees, minutes, and seconds
iclong—The 12-character vector of characters for the
longitude of the center
jflag—A flag that, when set to 1, indicates that no

(]

*axxx*xx SUBROUTINE SRCH4O_ADDRAD

record in file40 was found to correspond to the
given if, isf

Subroutines called: read40_addrad, dble, rconv__
addrad

Common data referenced: None

Input files: ctrdNM used on unit 40 (file40)

Output files: None

Arrays used: iclat(12), iclong(12)

Called by: addrad

Error checking and reporting: When no record is found

with the prescribed jf and isf, a message is sent to the
operator.

Constants: None

Program logic:

1. Following the same logic stream as in srch20__
addrad, search the file for the record with the
desired if and jsf values.

2. When found, the latitude and longitudes are made
double precision, and rconv_addrad is called to
convert them to vectors of characters.

* ok k Kk k kKX

subroutine srch40_addrad(ifs,isfericlatesiclongejflag)

UPDATED AS OF DEC.
H. JOHNSON

27, 1376

OO0 o0

SUBROUTINE USED IN MAIN PROGRAM "ADDRAD"

APPENDIX C 185
c
c THIS ROUTINE SEARCHES FILE 44U FOR THE RECORD HAVING THE OIVEN IF,I
c F
c THE NEXT RECORD WILL CONTAIN THE LATITUDE, LONGITUDE UF THE CENTER
c POINT
c
dimension iclat(12),iclong(12)
double precision radian
c
c
jflag = 0
[FIRST, SEARCH FOR THE IFes ISF IN THE CALLING PROGRAM.
10 call reav40_addrad(ifl,isfl,clatsclongeriflagl)
1f(iflagl .eg. 1) jo to 45
C TAIS READ 2 CARDS. THE FIRST IS A HEADER CARD AND GIVES THE IF1.,1
c F1
c THE SECOND IS A LATITUDE LONGITUDE CARD.
1f(it1l .eq. 1f .and. isf1 .eq. isflgo to 100
ifCifl .gt. if .or. (1f1 .eq. if .and. isf1 .gt. isf)lrewind 40
40 call read40_addrad(ifl,isfl,clatrsclongesiflagl)
1f(iflag? .eg. 1) go to 45
if(it ,eq. if1 .and. isf.eq.isfl)go to 100
ifCif1 Jlt. if .or. (if1 ,eq. if .and. isfl .lt. isf)lgo to 40
45 write(6,210)1f,1sf
9130 format (" THERE IS NO AREA WITH IF = ",1i5," AND ISF = ",i5)
rewind 44
jflay = 1
return
c
103 radian = dble(clat)
call rconv_addrad(radiansiclat)
radian=dble(clony)
call rconv_addrad(radiansiclong)
c KCONV CONVERTS "RADIAN" TO DEGREES, MINUTES AND SECONDS AND ENCODE
c
c THEM AS CHARACTERS INTO ICLAT AND ICLONG.
return
end

kkk ok kkk

¢ *x*xxxxx END SRCH4O_ADDRAD

SUBROUTINE NAME: READ40_ADDRAD

Author: Harold Johnson

Purpose of the program: read40__addrad is used to read
from file40, ctrdNM.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call read40_addrad (ifl,isfl,clat,-
clong,iflagl)

Arguments:
if1—The if number of this outline
isf1-The isf number of this outline
clat—The latitude of the center point of this outline

clong —The longitude of the center point
iflag1 - A flag to indicate the end of file40 has been
sensed
Subroutines called: None
Common data referenced: None
Input files: ctrdNM used on unit 40 (file40)
Output files: None
Arrays used: None
Called by: None
Error checking and reporting: None
Constants: None
Program logic:
1. file40 is read, two cards at a time, to determine the
arguments. iflag1 is set to 1 when the end of file is
sensed.

186

Cc Xk ok ok ok ok ok

READLU_ADDRAD sk hkx

GEOINDEX

suvbroutine read4U_addrad(ifl,isfl,clatrsclongsiflagl)

UPDATED AS OF DEC. 27, 1976

converted to multics May 20,

O O 000

SUBROJUTINE CALLED BY SRCH4O IN
H-

MAIN PROGRAM "ADDRAD"
JOHNSON

1977 by H Johnson

read(40,910,end=100)ifl1,ifnosrisf

91U format (315)

read(40,720,end=100)x0,y0sclongrclat

923 format (4€12.9)
iflag = U
return
iflag = 1
return
end

END READ4LO_ADDRAD **%xxkx

10J

C *rhkhkhkkn

SUBROUTINE NAME: WEIGHT_ADDRAD

Author: Harold Johnson

Purpose of the program: weight _addrad calculates a
weighted center for each edge of a polygon and adds
to the cumulated weighted center and total length.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call weight_addrad (x1,y1,x2,y2,xc,-
ye,td)

Arguments:
x1—-Longitude in radians of the first point
y1—Latitude in radians of the first point
x2 - Longitude in radians of the second point
y2 - Lsatitude in radians of the second point
xc— Longitude of weighted center

yc — Latitude of weighted center
td —Total length of curve

Subroutines called: None

Common data referenced: None

Input files: None

Output files: None

Arrays used: None

Called by: center_addrad

Error checking and reporting: None

Constants: None

Program logic:

1. The value z = |x2 -x1| + [|y2 -

calculated.

2. The value 0.5(x2 + x7)zis calculated and added to xc.
The value 0.5(y2 + y7)z is calculated and added to
yc.

3. zis added to td.

y1| is

subroutine weight_addrad(xl,ylsx2sy2excsrycrtd)

Axxxxxx SUBROUTINE WEIGHT_ADDRAD

Purpose: To
by addiny
multiplied by the

Programmer: H Johnson

Date: July 18, 1973

converted to multics May 6.,
mplicit double precision (a=-z)

2=abs(x2-x1) + abs(y2-y1)
xc=xc + 0.5*%(x2+x1)~2

1977 H.

LER B &8 81

calculate a weighted center for an added edge.
to each coordinate the average coordinate
tength of the segment.

Johnson

APPENDIX C

yc = yc + U.5*(yl+yl) 2
td = td + 2
return

end

* ok ok ok ok ok Kk

C **kkxxxnx END WEIGHT_MASTER

187

SUBROUTINE NAME: CENTER_ADDRAD

Awuthor: Harold Johnson

Purpose of the program: center_addrad computes a
central point for each outline in cordNM and stores it
in a file named ctrdNM.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call center__addrad

Arguments: None

Subroutines called: weight_addrad

Common data referenced: None

Input files: cordNM used on unit 60 (file60)

Output files:
ctrdNM used on unit 40 (file40)

Created by: center__addrad

Arrays used: None

Called by: addrad

Error checking and reporting: None

Constants: None

subroutine center_addrad
c

Chhkhhkhkhhkhkk

WEIGHTED

Program logic:

1. A header card is read from cordNM, and isfno, the
number of coordinate pairs that follow, is used to
compute the number of coordinate cards.

2. The first coordinate card is read. If only one point is
in the outline, that is assigned the center point.
Otherwise, beginning with the second and third
points, a weighted center is computed according to
the formulas described for weight__addrad.

3. The middle cards are read, and these computations
are continued with each pair of coordinate points.

4. The last card is read, and the final calculations are

xc = xcldt
yc = ycldt

5. A header card is written to ctrdNM with isfno = 2.

6. A latitude-and-longitude card is written to ctrdNM
with xc, yc.

7. Control goes to step 1 until the cordNM file is finish-
ed.

AVERAGE CENTER

8. Endfile and rewind are executed on ctrdNM.

* ok k ok kk ok kokkok

¢ Purpose: To compute a center for each outline in the
c radian coordinate file <cordNM ana put it in~ the
[file ctrdhNm .,
c
¢ Proyrammer: H Jonnson
¢ Date: July 18, 1978
c
¢ input file60: cordNm, a file of radian coordinates, giving the
c latitudes and longitudes, format 3(2f12.9))
c
double precision xxs yys, xstart, ystarts, xcs ycs dts, xlast, ylast
c
common truessks,ia
dimension xx(3),yy(3)
c
c
¢ FIRST, COMPUTE THE STATE MAP AREA IN SQUARE KILOMETRES.
c
in=60
iocntr=4u
100 read(in,93d,end=100U0) if,ifnosrisfrisfnosnotesnor,nif,ispan

900 format(8i5)
c

188 GEOINDEX

c WHEN ISFNO IS LESS THAN 4 WE DON'T HAVE A REGION AT ALL
c

1f(isfno.gt.3)go to 102

read(in,901,end=1000) (xx (1) ,yy(id),i=1,3)
901 format(6f12.9)
c
c
¢ IN THE CASE OF A SINGLE POINT, CALL THAT POINT CNTR.
C

ixc=xx(2)*x(10,%**9) +.5

iyc=yy(2)* (10, %%x9) +,5

isfno=¢

write(iocntr,905)ifs,ifnosisfrisfnos,notsnors,nif,ispan

write(iocntr,908)ixcsiyc

go to 100
102 continue
C
¢ CALCULATE NCARDS, THE NUMBER OF DATA CARDS ON THIS MAP
c

ncards=isfno/3

if(3*ncards .lt., isfno) ncards=ncaras+1

c
c
xc=0.
yc=0.
at=0.
c
c XC IS GOING TO 8t THt X-COORDINATE OF THE CENTER
(o YC Is GOING TO B8E THE Y/COOROINATE OF THE CENTER
[« DT IS THE ACCUMULATED NORMED DISTANCE BETWEEN POINTS
c
c READ IN THE FIRST DATA CARD
c

reac(in,901,end=1000) (xx (i) ,yy(i),i=1,3)

xstartsxx{(2)

ystart=yy(2)

ie=3

if(ncards .eg. 1) 1e=isfno

JdJo 200 j=3,ie

31=3-1

call weight_addrad(xx(j1)syy(31)exx(j)eyy()j)sxcoycosdt)
204 continue

if(ncards .eq. 1) go to 500

xlast=xx(3)

ylast=yy(3)

if{ncards .eq. 2) go to 40U
c READ IN THE MIVDOLE CARDS, BETWEEN THE FIRST AND LAST,
kl=ncards-1

go 300 k=2,kl
read(in,‘?d‘l)(xx(’i),yy(i);’iz‘l,S)

APPENDIX C 189
call weight_addrad(xlastsylast,xx(1),yy(1),xceycr,dt)
do 301 j=2,3
jr=j-1

call weight_addrad{xx(j1),yy(j1),xx(j)syy{(j)sxcryc,dt)

301 continue
xlast=xx(3)
ylast=yy(3)
30J continue
400 continue
c
c NOw READ IN THE LAST CARD
c
read(in,90 M) (xx(i)syy(i1),i=1,3)
ie=isfno-3*(ncards-1)
if(ie .eg., U) i1e=3
call weight_addrad{xlastsylast,xx{(1),yy(1)sxcorycsrat)
if(ie .,eg. 1) go to 500
do 401 j=2,1ie
31=j-1
call weight_addrad{xx{(jJ1),yy(j1)oxx(j)syy(3lsxcrycrat)
401 continue
500 continue
c
c WHEN THE REGION IS NOT CLOSED., WE MUST ADD THE LAST DATA POINT
c
test=(xx(ie)-xstart)*+x2 + (yy(ie)-ystart)*x?
if(test.lt..01) go to 501
call weight_addrad(xx(ie)syy(ie)sxstartrsystartsxceycedt)
501 continue
503 continue
xc=xcl/dt
yc=yclat
isfno=2
write(iocntr,905)if,ifnosisfrisfno,nots,nor,nif,ispan
90> format(gisS)
ixc= 1dint(xc*x1000000000.+40.5)
iyc= 1idint(yc*x1000030000.+0.5)
writeliocntr,908)ixcriyc
903 format(24x,2i12)

go to 1JU

1000 endfile 40U
rewind 40
return

end

SUBROUTINE NAME: FTNUMBER

Awuthor: Harold Johnson
Purpose of the program: ftnumber is used to attach and

Calling sequence: call ftnumber (iunit,name,mode)

Arguments:
iunit—The Fortran number of a file being attached

open a file on the Multics system. It allows for any file
mode.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

name— The name of the segment being attached (This
can have as many as six characters.)
mode— Type of file access method
Subroutines called: The Fortran routine encode and the
system routine I/0

190

Common data referenced: None

Input files: None

Output files: None

Arrays used: None

Called by: concat, master, addrad, out1_bigsta, out-
2_ bigsta

E'rror checking and reporting: None

Constants: None

C *hkxkkkk

subroutineg
c

SUBROUTINE FTNUMBER

PURPOSE:

PROGRAMMER:
DATE::

H Jonnson
Sept 30, 1977

junit = fortran i1/0 number
name =
mode = "si","so", etc.
modified from

by HJohnson May 20, 1977.

OO0 OO0 0000000

* k kk ok kK&
ftnumber(iunitesname,mode)

To automatically attach and open files

the program assoc of

GEOINDEX

Program logic:

1. The assigned Fortran number junit is inserted into
the character string fname in the form fileNM,
where NM is the number iunit.

2. If the mode is not so, attachment is made using
arguments -append and -ssf.

3. If the mode is so attachment is made.

in Fortran

up to bé-character ¢ name of a file.,

>udd>Grasp>RBowen>assoc

character name*bs,fnamexd,modexb,fmtx12

fmt = "(4nfileri2) "
if(iunit le. 9) fat =
encode(fnames,fmt) 1unit
if (mode .eq. "so") yo to 20
call
call 10
return
c
20 call
call
return
C
end

("open",tnamer,mode)

io ("open",fname,mode)

"(Shfileds,il)"

io ("attach",fname,"vfile_"sname,"-appena”,"-ssf")

io ("attach”,fname,"vfile_"s,name)

EXEC-COM NAME: COVERT.EC

Author: P. A. Fulton

Purpose of the program: covert.ec, written in Multics
command language, reads the redyNM file and
creates a GRASP file for the State.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: ec covert NM state

Arguments:
NM- FIPs code for the State
state— Name of the State

Subroutines called: setmas, convert

Common datae referenced: None

Input files: dicn, mask, crfile, indxNM, redyNM, defn

Output files: index0

Arrays used: None

Called by: None

Error checking and reporting: None

Constants: None

Program logic:

Turn off the COMMAND LINE.

Attach the exec_com to setmas.

Execute setmas.

Upon completion of setmas, detach the files.

Attach the exec__com to convert.

The exec_com will pass the names of six
files— dicn, mask, crfile, indxNM, redyNM, and
defn to be read by convert.

SO o

APPENDIX C

7. Detach the files.
8. Attach the exec__com to ted, which is a text editor.
9. Read index0 and then read file15, which will
append file15 to index0.
10. Write index0.

Gcommand_Lline off
&attach
setmas

1 18

yes
&detach
&attacnh
convert
dicn

mask
crfile
indxé&1

n

redysi

n

defn
reference map file for &2
&detach
gattach
ted

r index9d
r filels
w inaexu
q

&detach
dl filel5
&quit

191

11. Quit and exit from the text editor.
12. Detach the files.
18. Delete file15.

| 14. Quit the exec_com.

FILE NAME: CRFILE

Purpose of the file: crfile is a control file for the GRASP
programs, It enables GRASP to read the redyNM files
correctly.

Format: The first record contains nacr and nrec, for-
mat I3, I5. The remaining records contain acronm,
itype, and ifirst, format A9, I1, I5.

Arguments:
nacr—The number of acronyms to follow = remaining

crfile

38 1211
id 1 1
state 3 5
author 6 25
year 1 205
title 6 209

number of records in crfile

nrec—The total length of the strgNM and redyNM
records

acronm—The acronymns used in matrix

itype—The type code used by GRASP

ifirst—The position in the records of strgNM and
redyNM where this type of data begins

Referenced by: The GRASP programs, which set up
GRASP files.

192

county 6 449
publish 6 629
series 6 689
emphasi 6 809
area 2 869
aunit 6 877
nlat 1 884
slat 1 896
wlong 1 908
elong 1 920
clat 1 932
clong 1 944
omaps 6 956
avail 6 1016
base 31076
geology 3 1106
plate 6 1118
idstat 1 1148
scale 1 1150
idsub 1 1158
ibound 1 1160
ispan 1 1166
alsomap 6 1172
dum0 1 1202
duml 1 1203
dum? 1 1204
dum3 1 1205
dumé 1 1206
dumb 1 1207
dumé 1 1208
dum? 1 1209
dum8 1 1210
dum9 1 1211

GEOINDEX

PROGRAM NAME: SETMAS

Author: P. A. Fulton

Purpose of the program: setmas creates the index file
required by GRASP. This GRASP file is limited to 10
entries. This program accepts a list of State FIPS
codes and creates files containing a GRASP entry for
each State.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: setmas

Arguments: None

Subroutines called: None

Common data referenced: None

Input files: index0 used on unit 11 (filfe17)State codes
entered interactively)

Output files: index, a subset of index0, used on unit 12
(file12)

Arrays used: in9,2), ir1(80)

Called by: covert.ec, gr.ec, usmerg.ec

Error checking and reporting: System only

Constants: None

Program logic:

1. This program executes interactively. It begins by re-
questing the State codes:

ENTER ONE DIGIT FOR NUMBER OF
STATES TO QUERY AND FOLLOW BY LIST
OF TWO DIGIT STATE CODES WITH
BLANKS BETWEEN
Reply: 3 02 16 39
This reply indicates 3 State entries are to be put into
the output file index. These States are coded 02
(Alaska), 16 (Idaho), and 39 (Ohio).

2. All I/O operations are handled internally by the pro-
gram,

8. The program compares the codes input via the term-
inal to the codes in file index0. When the codes
match, a State entry in proper GRASP format is
placed in the output file index. index is then used
by GRASP.

APPENDIX C

setmas
character

dimension
call 10
call 1o
call 10
call 10 ("open”,"filel2","sic")

print,"enter one digit

irxt,irtxt
ir(9.,2), ir1(30)

("Open"l"file11""'Si")

193

("attach""'fi le11.""vfile~ ."".indexu.')
("attach","filel12","vfile_ ","index")

for number of states to query and follow”
print,"vy list of two aigit state codes with

blanks between”

read (5,131) nsa(irCis1)sir(ise)si=Ten)

101 format (11,x,9C2a1+x))

221 read (11,102+,end=90) ir1

102 format (80al1)

do 220 1i1=1,n

if (ir(i,1) Jne. ir1(5)) go to 22U
if (ir(isl) .ne. ir1(0)) go to 220
Wwrite (12, 1d2) ir1

220 continue
go to 221
90 continue
end file 12

call 10 ("close”,"filel11")
call 1o ("close",”"filel12")
call 1o ("detach”,"filel1")
call 1o ("detach”."filel12")
stop
end

EXEC_COM NAME: GR.EC

Author: P. A. Fulton

Purpose of the program: gr.ec, written in Multics com-
mand language, sorts the State index file by scale and
creates three files: t7p for scales LE (less than)
1:24,000, t2p for scales GT (greater than) 1:63,360,
and t3p for scales BE (between) 1:24,001 and 1:63,360.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: ec gr NM

Arguments: NM— FIPS code for the State

Subroutines called: setmas, GRASP

Common data referenced: None

Input files: index0

Output files: t1p, t2p, t3p, t1, 12, t3, and output_file

Arrays used: None

Called by: None

Error checking and reporting: None

Constants: None

gr.ec
&command_Lline off
gattach

fo

setmas

1 %1

Program logic:
1. Turn off the command line.
2. Attach the exec__com to the program setmas.
3. Designate the user output to a segment by the FO
command.
4. Execute subroutine setmas.
5. The exec com supplies answers to queries in set-
~ mas.
6. The file is detached.
7. input_line is turned off.
8. Attach the exec__com to the program GRASP.
9. The exec__com contains responses to prompts in the
GRASP program.
At the end of GRASP, the file is detached.
. User output is directed to the console by the RO
command.
. The file called output_file is deleted.
. The three files t1p, t2p, and 13p are automatically
dprinted.
. Quit the exec__com.

194 GEOINDEX

yes

&detach

& input_Lline off
gattach

grdasp

cond

scale le 24000

scale gt 63364

scale be 2400U1,63306U

logic
a
search

t1
List
t1

50

c

Y

tip
ibound
id
idsub

logic
b
search

t2
List
te

50

c

Y

t2p
n
logic
c
search

t3
List
t3
50

c

Yy
t3p
n
quit
no
&detach
co

APPENDIX C

dl output_file
dp tlp

dp tlp

dp t3p

§quit

195

EXEC__COM NAME: INPLOT.EC

Author: P. A. Fulton

Purpose of the program.: inplot.ec, written in Multics
command language, plots the three files created by
gr.ec—that is, t1p, t2p, and t3p. It provides a visual
check of the integrity of the plot files.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: ec inplot NM state

Arguments:
NM -FIPS code for the State
state— State name

Subroutines called: pn16

Common data referenced: None

Input files: bordNM, coorNM, statNM, counNM,
gridNM

inplot.ec
dcommand_Lline off
stty ~modes pl0Q
§input_Llines off
&attach

pnlo

n

&

Y

tlp

y
scale ye 1:24000 &¢

2p

cale Lt 1:63360 «2

O C=20C=2unNX XXX 30 C=a20—=

Output files: Plots on the Tektronix screen

Arrays used: None

Called by: None

Error checking and reporting: None

Constants: None

Program logic:

1. command__line is turned off.

2. page__length is set to 0 to disable end-of-page check-
ing.

3. &input_lines off disables the computer from accept-
ing input from the terminal.

4. &attach attaches the arguments in the exec__com
directly to pn16.)

5. Response to prompts in pn16 are fulfilled within the

exec_com.

. &detach detaches the exec__com from pn16.

. page__length is set to 114.

Quit.

® 3o,

196

W
©

cale between 1:24000,1:63360 &2

ounties for &2

S0 0C 2003 DJ230C=-=0O=-=0nxXm"mrxXXX D

3

yes
¢detach

stty -modes pl114
§quit

GEOINDEX

PROGRAM NAME: PN16

Author: P. A. Fulton

Purpose of the program: pni16 plots a State index map
interactively on a Tektronix CRT screen. This is a
two-step process. First, a GRASP retrieval is ex-
ecuted wherein a disk file is created that contains the
links to the coordinate Geoindex files. This GRASP
file is identifed as unit 13. However, the program is
constructed so that the user has the option of plotting
any combination of the input files.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: pn16

Arguments: None

Subroutines called: initt, anmode, erase, movabs,
dwindo, swindo, movea, drawa, ancho, bell,
hdcopy, vcursr, finitt (Tektronix routines), plod,
pos, plo, ploc6, assoc

Common data referenced: x1, y1, x2, y2

Input files:
Input from terminal used on unit 5 (file5)
c00rNM used on unit 10 (file10)
bordNM used on unit 11 (file171)
GRASTP file used on unit 13 (file13)
statNM used on unit 14 (file14)

counNM used on unit 15 (file15)

gridNM used on unit 16 (file16)

skod used on unit 17 (file17)

Superimposed file used on unit 20 (file20)
Output files: Output to terminal used on unit 6 (file6)
Arrays used: lead(20), xx(6), yy(6), mor(300), ista(6)
Called by: Can be executed by inplot.ec
E'rror checking and reporting: When the array size of

300 entries for the input plot file (file13) is exceeded,

the program returns the error message:
BUFFER EXCEEDED

When the number of x, ¥ coordinates does not match

the number given on the header card (/sfno), the pro-
gram returns the error message:
REC COUNT ERR
All error messages concerned with I/0 handling are
identified by system messages and system returns.
Constants: ingd = 10 and ing = 13 are file numbers; rsiz
= 0.3 size in inches for numbers shown on plot; ichar
= 43 character (+) for points plots.
Program logic:

1. The program prompts the user for all the specific in-
put and output desired. The first phase requires
the user to identify the single, specific State.

2. The program does all the file handling internally to
relieve the user of all systems duties. However, all

O OO0 o000 0000000000000 0oO0

APPENDIX C

the files listed above must be available because
they are attached and opened here at the beginn-
ing of the program.

. The program requests the input file (file13), which

is to be plotted. If necessary, the program sorts
the data into ascending order by keying on the id
number.

. The plot window is computed from the coordinates

of the border files, bordNM.

. The annotation and exact data files that are to be

plotted are elicited from the user.

. The actual plotting is initiated in the following

order: border, State, county, grid, and the input
file, which was created by GRASP (file13) and
which is to be plotted. The program reads the
value of ibound from this input file and assigns to
it the variable name imap.

The program reads through the coorNM file. From
the header cards, it obtains the identification and
subidentification numbers, which it combines into
the variable if and compares to imap.

When these numbers from the two different files
match, the outline is plotted. First the identifica-
tion number is plotted, its position determined by
the first pair of «, ¥ coordinates. Then the rest of
the x, y coordinates are plotted to form the
outline. The program uses the number of points
(isfno) read from the header card to compute the
end of a feature outline.

For very small areas, there is only one z, ¥ coor-

pn1é

197

dinate pair for the outline, and the symbol (+) is
plotted at that point.

10. After the entire input file (file13) has been plotted,

11

12

13

14

15

the program tests to see whether another file
should be superimposed. If so, it is plotted by
subroutine ploc6. plocé plots this superimposed
file similar to the way pn16 plots the coorNM file.
The exception is that ploc6 plots the entire file
that is to be superimposed but does not compare it
to any other input file from GRASP.

. After the plot is completed, the bell rings to alert

the user to make hard copies of the plot and (or) to
continue the execution of the program.

. The next phase of the program permits the user to

enlarge any part of the plot. The new plot window
is defined by use of the crosshair cursor.

. The program then loops back so that the appro-

priate annotation and files are used for the enlarg-
ed part of the plot. This enlargement cycle can be
continued until the user is satisfied and decides to
go on to the next part of the program.

. The next part of the program enables the user to

designate another input file from GRASP or simp-
ly to loop back through the program and plot any
of the base sheet files. However, to plot another
State, the program must be exited and reinitiated.

. The final phase of the program closes the files. It

then writes the message

GOOD
to the screen to indicate that the program ter-
minated successfully.

program to plot map indices on tektronix

U. S. geological survey

june 1977

input/output files
S input from terminal
6 output to terminal
1J coordinate files
11 bord

13 file from grasp contains three

14 stat
15 coun
16 grid

17 skod - file with state names.,
2 file to superimposed same format as coor file

items:iboundsideidsub

numeric and alphabetic fips codes

198 GEOINDEX

c
c
common xlsylex2ey?l
character skud*dsfnamex8,fmtx12,ifilex8
dimension lead(20),xx(6)syy(6)smort(300),ista(6)
data jes/"y"/,kop/"c"/,ibnk/!" "/
gata skud/"skod "/
c
call initt(960)
c
c
ingd=10
rsiz=d.3
ichar=43
ing=13

assign files
call anmode
prints."need state codes (enter y for yes)"”
read (5,130) irep
if (irep .ne. jes) go to 383
fmt="(ag8)"
encode (fname,fmt) skud
call assoc (17,fname,"si ")
do 381 i=1,54
read (17,141) istariles,nmb
write (6,142) istarile,nmb
142 format (1x,634,a32+,5%x,12)
141 format (6abral,il)
381 continue
print,"type 1 ana hit return key when ready"
readrready
call closer (17)
383 call erase
call movabs (30,725)
call anmode
prints,"enter state id number"
read(5,140) istate
140 format (a4)

fmt="(4hcooreras)d"

encode (fname,fmt) istate
call assoc (10r,fnamer"si)
fmt="(4hbords,as4)"

encode (fname,fmt) istate
call assoc (11,fname,"si ‘)
fmt="(4hstatsad)"”

encode (fname,fmt) istate
call assoc (l14srftname,"si ")
fmt="(4hcounsad)"

encode (fname,fmt) istate
call assoc (1S5,fname,"si ")
fmt="(4hgridesasdd"

encode (fname,fmt) istate
call assoc (16sftnames"si ")

APPENDIX C 199

c
c
c request input file for plotting
c
380 continue
kk=0
c

call movabs (30,715)
call anmode
print,"it a coordinate file is to be plotted, enter y"
read (5,130) icor
if (icor .ne. jes) go to 343
print,"enter name of file to be plotted”
read (5,131) ifile
131 format(agd)
call assoc (13,ifile,""s7i ')

eliminate duplicate id numvers
and sort id numbers into ascending order

o0 00

print,”if input should be sorted reply with a y for yes"
read (5,130) 1irep

130 format(a?l)
if (irep .ne. jes) go to 343

c
rewind 1ing
im=0

c
im1=0

339 read (ing,124,end=340) imap
124 format (11U)
im=im+1
mort(im)=imap
if (im Jlt. 3U0) ygyo to 339
prints,"buffer exceeded"

340 continue
call closer (13)
k=0

c

do 338 i=1,1im

les=mort (i)

do 364 j=i,im

if (les .le. mort(j)) go to 364
tess=mort())

mort(})=les

les=less
364 continue

mort(i)=les
338 continue

rewind ing

call assoc (13,ifilesr"sio ")
imapl=mort(1)

write (ing,124) imapl

k=k+1

200

363

343

553

550

302

122

160

GEOINDEX

do 363 i1i=2,im

imap=mort(i)

if (imap .e3. imap?) go to 363
write (ing.,124) 1imap
imapl=imap

k=k+1

continue

end file inyg

rewind ing

continue

set origin on plotter

call pos(1lsxxsyy)

x1=aminT (xx(2)srxx(3)pxx(4),xx(5)sxx(6))
x2=amax1(xx(2)rxx(3)pxx(4)rxx(5)sxx(6))
yl=aminl(yy(2)ryy (3),yy(4)»yy(5),yy(6))
y2=amax1(yy(2)royy(3),yy(b4),yy(5),yy(6))

ax=x2-x1
dy=y2-y1

use the bord file to compute the plot window

call dwinago (D.»,dx,0.,dy)
x=(dx*780.,)/dy

iXITX

1x1=1023-1ix

if (dx .gt. dy) go to 559
call swingo (ix1,1x,0,780)
go to 551

y=(dy*1023.) /dx

iy=y

if (iy .gt. 780) go to 552
call swindo (Op1023;0'iy)
4o to 551

ix1=1y-730

ix=1023-1ix1

call swindo (ix1,i1x,0,730)
continue

boraer information

continue

call movabs(30,650)

call anmode

prints."enter title for map"
read (5,122) lead

format (20a4)

print,"to plot state enter 1"
read (5,160) 1i1stat

format (i)

prints"county plot-enter 1 for
read (5,160) icoun

print.,"to plot yrid enter 1"

solid Line.,

2 for dotted»

else 0"

APPENDIX C 201

reaa (5,160) igrid
print,"to superimpose another file,enter U for no.,
print,"1 for lines only, 2 for lines and characters"
read (5,160) isup
if (isup .eg. O0) go to 304
prints,"enter tile name"
read (5,131) ifile
call assoc (20,ifiler,"si ')
304 continue

call erase
call movabs (30,750)
call anmode
write (6,123) lead

123 format (1x,2Ja4)

c

c draw neat line

[
if (kk .eg. O) go to 419
call movea(x1,y1)
call drawa (x2,y1)
call drawa (x2,y¢)
call drawa (x1,y2)
call drawa (x1,y1)

c

c plot base map

c

419 continue

c

call plo(11)
if (istat .ne. 1) go to 470
call plo(14)

479 if (icoun .ne. 1) go to 476
call plo (15)

476 if (icoun .ne. 2) go to 471
catt plod (15)

471 if (igrid .ne. 1) go to 472
call ploco(16)

c
472 if (icor .ne. jes) go to 89
c
c plot coor tile
c
rewind ing
rewind ingd
c
c
319 continue

read (ing,124,enad=89) imap

320 read (ingd,111,end=89) if,ifnorisfrisfnos,ifl,jstatsjgratsjspan
if=(if*x100)+isf

111 format (8i5)
if (if-imap) 335,337,360

360 read (ing,124,end=89) imap
if (if-imap) 335,337,360

202

335

336

126

137

529

321

521

do 336 j=1,1sfno.b

GEOINDEX

read (ingds,126) (xx(i),yy(i1),1=1,06)

continue
go to 320

continue

ie=isfno
if (isfno .yge. 6) ie=6

read (ingd,126) (xx(i)syy(id,i=lsre)

format (12f6.3)
1f (isfno .ge.l) go to

1f ((xx(1) .le. x1) .or.
1f ((xx{(1) .3e. x2) .or.
call movea (xx(1),yy (1))
call anmode

write (6,137) 11 f

format (1x,15)

if (jspan .eqg. U) go to 5
ry=yy(1)-rsiz

call movea (xx(1),ry)
call anmode

write (0,137) jspan

call movea (xx(2)syy(22))
call ancho(ichar)

321

(yy (1)
(yy (1)

2

if (if1 .eg. U) go to 32U

ry=ry-rsiz

call movea (xx(1),ry)
call anmode

write (6,137) 1f1

go to 320

continue

if ((xx(1) Jle.e x1) .o0r.
1f ((xx(1) .ge. x2) .or.
call movea (xx(1),yy (1))
call anmode

write (6,137) it

(yy (1)
(yy(1)

if (jspan .eye. U) go to 521

ry=yy(1)-rsiz

call movea (xx{(1),ry)
call anmode

write (6.,137) jspan

if (1f1 Leqg. U) go to 44
rysry=-rsiz

call movea (xx(1)s,ry)
call anmode

write (6.137) if1

9

.le.
.ge.

.le.
«ge.

y1)) go to 320
y2)) go to 320

y1)) go to 449
y2)) yo to 449

341
537
345

322
333

342

88
128

129

505

506

o o000

305

APPENDIX C

go to 449

continue

call movea (xx(1),yy(1))
call anmode

write (6,137) if

continue
call movea (xx(2),yy(2))

do 341 k=2,ie
call drawa (xx(k),yy(k))
continue

isfno=isfno-6

if (isfno) 320,32G,345
if (isfno-6) 322,322,333
ie=isfno

read (ingds,126,end=88) (xx(i),yy(i),i=1,ie€)

do 342 k=1,1e
call drawa (xx(k)esyy(k))
continue

if (isfno-o0) 320,320,537

write (6.,1238) ifsifnorisfrisfno
format (1x,13,2i12,15)

write (6,129)

format (1x,"rec count err")

go to 99

superimpose another file

continue

if (isup-1) 305,505,506
call plo (202

call closer (20)

go to 305

call ploce (20

call closer (200

copy and/or exit

continue

call vell

call anmode

read (5,130) icopy

203

204

c selected portion of plot can be enlarged

if (icopy .ne.
call hdcopy
452 continue
c
c

call movabs(30,730)

call anmode

print,"for an enlargement of a part of this plot,
irep

read (5,130)
kk=kk+1

if (irep .ne.
call movabs (30,720)

call anmode

print,”"position cursor at
call vcursr(Cichar,x1,y1)
(30,710)

call movabs
call anmode

print,"position cursor at upper right of desired area,
call vcursr(ichar,x2,y?2)
call dwindo (x1,x2,y1,y2)

call erase
go to 303

H0 0 60

77 call movabs
call anmode

print,"to plot another file enter y for yes"
irep
jes)
jes)

read (5,130)

if (irep .ne.
i1f (icor .ne.

call closer
306 continue

call erase

go to 38U

99 continue
call closer
call closer
call closer
call closer
call closer

1if (icor .ne.

call closer

more data or exit

(30,7100

(13)

(100
(11)
(14)
15)
(16)

(13)

307 write (0.,106)

106 format (7h
call finitt

stop

end

gooa)
(Ur,0)

kop) go to 452

jes) go to 477

go to 99
go to 306

jes) go to 307

type y"

lower Lleft of desired area, type c¢"

type ¢

APPENDIX C

SUBROUTINE NAME: POS

Awuthor: P. A. Fulton
Purpose of the program: pos reads the bordNM data
file, which consists of a header card and a card with six
x, y coordinate pairs. bordNM is the neat line around
the map plot, and it serves to define the plot window.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call pos (ingd,xx,yy)
Arguments:
ingd—The unit number assigned to the bordNM file
(This is an input value to the subroutine.)
xx—An array containing six elements (The « coor-
dinates are stored in it and passed as output from
the subroutine.)
yy—An array dimensioned 6 (The y coordinates are

SJYBRIUTINE PISCINGD/XX,YY)
DIMENSION XX(0),YY(6)

ik=o0

REWIND INGD

205

stored in it and passed as output from the
subroutine.)

Subroutines called: None

Common data referenced: None

Imput files: bordNM

Output files: None

Arrays used: xx(6), yy(6)

Called by: pn16

Error checking and reporting: None

Constants: None

Program logic:

1. The program picks up the device number via the
argument and reads the header and data images;
then, it passes the x, y coordinates to the calling
routine via the arguments and returns. This
subroutine only accesses the file. The file opening,
closing, and all other manipulations are done in the
calling routine.

IF,IFNOL,ISF,ISFNO,IF1

32U READ (INGD,111,END=89)
111 FORMAT (S515)
READ (INGD,126) (XXCI),YY(I),I1=1,1E)
126 FORMAT (12F56.3)
39 RETURN
END

SUBROUTINE NAME: PLO

Awuthor: P. A. Fulton

Purpose of the program: plo plots solid outlines and
points for spatial data files that are structured the
same as the coorNM files. These are bordNM,
gridNM, statNM, and counNM.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call plo (in)

Arguments: in— The unit number assigned to the file to
be plotted

SUBROUTINE PLOCIN)

UDIMENSION XX(0),YY(0O)
ICHAR=43

RSIZ=J.35

REWInD IN

IPEN=U

Subroutines called: Tektronix plot routines— movea, an-
cho, drawa

Common data referenced: None

Input files: bordNM, statNM, counNM, gridNM

Output files: None

Arrays used: xx(6), yy(6)

Called by: pn16

Error checking and reporting: None

Constants: ichar = 43, rsiz = 0.3

Program logic:

1. This subroutine only reads the file and plots the data.
The file opening and closing procedures are done in
the calling routine.

206

C PLUOT DATA FROM
419 CONTINUE

429 READ (INA,T11,END=31Y)

111 FORMAT (S51I5)

132 FORMAT (1X,515)
IPEN=IPEN®+T
IF (IPEN .GT. 4)
NL=NL+1

FIRST SOURCE

IPEN=1

IE=ISFNO

IF (ISFwD
READ (I,
FORMAT (12F6.3)

FORMAT (1X,12F6.3)

1F (ISFNO .GE. 3) GO TO
CALL MOVEA (XX(2),YY(2))
CALL ANCHOCICHAR)

G0 TO 420

«0Ea. 0) I1E=o

1206)
126

127

443

448 CONTIWNUE

CALL MCVEA (XXx(Z2),YY(2))

DJ 441 K=2,1E

CALL DRAWA (XX(K),YY(K))

CONTINUE

ISFNO=ISFNO-6

1F (ISFHNO) 419,419,445

445 IF (ISFNO=0) 422,422,433
422 1E=ISFNC

433 READ (IN,

441
437

126,END=88)

VO 447 K=1,1E
CALL DRAWA (XX(K),YY(K))
442 CONTINUE

IF (ISFNU=6) 419,419,437

88
319

CONTINUE
CONTINUE
ReETURN
END

GEOINDEX

IFAIFNOLISFL,ISFNOL,IF

(XXCI)oYY(1) s I=1,1E)

(XXCI)YP YY(I)WPi=1,1E)

SUBROUTINE NAME: PLOD

Author: P. A. Fulton

Purpose of the program: plod plots points and dotted
outlines for spatial data files that are structured the
same as the coorNM files.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call plod (in)

Arguments: in— The unit number assigned to the file to
be plotted

Subroutines called: Tektronix plot routines— movea, an-
cho, dasha

Common data referenced: None

Input files: counNM

Output files: None

Arrays used: xx(6), yy(6)

Called by: pn16

Error checking and reporting: None

Constants: ichar = 43, rsiz = 0.3

Program logic:

1. This subroutine only reads the file and plots the data.
The file opening and closing procedures are done in
the calling routine.

APPENDIX C 207
SU3BROUTINE PLOD(IN)
C
UVIMENSION XX(0),YY(6)
RSIZ=0.3
ICHAR=43
KEWIND IN
IPEN=J
C PLOT DATA FRUM FIRST SOURCE
419 CONTINUE
420 READ (IN,T111,END=319) IF,IFNOLISF,L,ISFNOLIF1
111 FORMAT (S515)
132 FORMAT (1X,515)
IPEN=IPEN+1T
IF (IPEN .GT. 4) IPEN=1
NL=NL+1
¢
IE=1SFNO
IF (ISFNO .GE. 06) IlE=6
READ (IiNe 126) (XXCI)Y,YY(1),1=1,1E)
126 FORMAT (12F6.3)
127 FORMAT (1X,12F6.3)
IF (ISFNO .GE. 3) GO TO 448
CALL MOVEA (XX(2),YY(2))
CALL ANCHOC(ICHAR)
GO 10 420
C
445 CONTINUE
CALL MOVEA (XX(2),YY(2))
DU 441 K=2,1E
CALL DASHA (XX(K),YY(K),1)
441 CONTINUE
437 ISFNO=ISFNO-0o
IF (ISFNO) 419,419,445
445 IF (ISFNO=-6) 422,422,433
422 IE=ISFNO
433 READ (IN., 126,END=88) (XX(I),YY(I),I=1,1E)
C
DO 442 K=1,1¢E
CALL DASHA (XX(K),YY(K),1)
442 CONTINUE
¢
IF CISFNO=6) 619,419,437
C
88 CUNTINUE
319 CONTINUE
RETURW
ENND

SUBROUTINE NAME: PLOC6

Author: P. A. Fulton

Purpose of the program: plocé plots solid outlines,
points, and identification numbers for spatial data
files that are structured the same as the coorNM files.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call plocé (in)

Arguments: in— The unit number assigned to the file to
be plotted

208

Subroutines called: Tektronix plot routines— movea, an-
mode, ancho, drawa

Common data referenced: x1, y1, x2, y2

Input files: gridNM used on unit 16 (file16)

Output files: None

Arrays used: xx(6), yy(6)

SUBROUTINE PLOCO® (IN)
DIMENSION XX(6),YY(6)
COMMON X1,Y1,%X2,Y2
ICHAR=43

RSI1Z=0.3

IPEN=0

REWIND 1IN

CONTINUE

READ (IN,111,END=319)
FORMAT (S51I5)
FORMAT (1X,515)
IPEN=IPEN+1

IF (IPEN .GT. &)
NL=wL+1

419
4290
111
132

IPEN=1

IE=ISFNO

IF (ISFNO .GE. 6)
READ (IN, 126)
FORMAT (12F6.3)
FORMAT (1X,12F6.3)
IF (ISFNO .GE. 3O

IE=6

126
127
GO TO 421

IF ((XX(1) .GE. XZ2) .OR.
IF (CIFNO .EQ. 1) .AND.
CALL MOVEA (XX(1),YY(1))
CALL ANMODE

WRITE (6,137) IF

FORMAT (1X,I5)
RY=YY(1)=-RS1Z

CALL MOVEA (XX(1),RY)
CALL ANMODE

WRITE (6,137) ISF

CALL MOVEA (XxX(2),YY(2))
CALL ANCHOC(CICHAR)

GO TO 420

(ISF

137

450 CONTINUE

CALL MOVEA (XX(1),YY(1))
CALL ANMODE

WRITE (6,137) 1IF

CALL MOVEA (XX(2),YY(2))
CALL ANCHOC(ICHAR)

GO TO 420

421 CONTINUE

IF ((XxX(1) .LE. X1) .OR.

Yy (1)
.EQ,

(yy<1)

GEOINDEX

Called by: pn16

Error checking and reporting: None

Constants: ichar = 43, rsiz = 0.3, ipen = 0

Program logic:

1. This subroutine only reads and plots the data. The
file opening and closing procedures are done in the
calling routine.

IF,IFNO,ISF,ISFNO,IF

(XXCI)»YY(I),I=1,1E)

Y2)) GO TO 420
GO TO 450

.GE,
1)

+LE. Y1)) GO TO 4438

APPENDIX C
(Yy¢t)

IF ((XX(1) .GE. X2) .OR.
IF (CIFNO .EQ, 1) JAND.
CALL MOVEA (XX(1),YY(1))
CALL ANMODE

WRITE (6,137) IF
RY=YY(1)-RSIZ

CALL MOVEA (XX(1),RY)
CALL ANMODE

WRITE (6,137) ISF
IF (IF1 .EQ. O0)
RY=RY-RSIZ

CALL MOVEA (XX(1),RY)
CALL ANMODE

WRITE (6,137) IF1

(ISF

GO TO 4438

C
GO TO 448
C
446 CONTINUE
CALL MOVEA (XX(1),YY(1))
CALL ANMODE
WRITE (6,137) 1F
¢
448 CONTINUE
CALL MOVEA (XX(2),YY(2))
DO 441 K=2,1E
CALL DRAWA (XX(K),YY(K))
441 CONTINUE
C
437 ISFNO=1SFNO-6
IF (ISFNO) 419,419,445
445 IF (ISFNO-6) 422,422,433
422 IE=ISFNO
433 READ (IN, 126,END=83)
DU 442 K=1,1E
CALL DRAWA (XX(K),YY(K))
442 CONTINUE
¢
IF (ISFNO-6) 419,419,437
C
88 CONTINUE
319 CONTINUE
RETURN
END

.EQ.

209

Y2)) GO TO 4438
GO TO 446

.GE.
1))

(XXCI)pYY(1)»1=1,1E)

SUBROUTINE NAME: ASSOC

Author: R. W. Bowen

Purpose of the program: assoc performs the I/0 func-
tions necessary to access a file. These functions are at-
tach, open, close, and detach.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call assoc (iunit,name,mode)

Arguments:

funit— Fortran 1/O unit

name— Name of disk file data set (may be passed as a
character string literal with 8 characters, or as a
double precision variable, or as a character string
variable)

mode—"si” for formatted input, “so” for formatted
output, “sqi” for unformatted input, “sqo” for unfor-
matted output, “di” for keyed input, “do” for keyed
output

210 GEOIN

Subroutines called: io_call
Common data referenced: None
Input files: Any file needed by user
Output files: None

Arrays used: None

Called by: pn16

Error checking and reporting: None

DEX

Constants: None

Program logic:

1. This subroutine performs the I/O functions of attach
and open on the file passed to it as the name
parameter when called by the entry assoc. When
called via the entry point, closer, the subroutine
closes and detaches the name file.

subroutine assoc (iunits.namer,mode)

May be passed as a character

string literal with 8 characters or as a double precision

put

Lofmtx12

eQ,i1)"

_ "sname,"-append’)

c
c junit= fortran i/o number
c name= name of disk file data set.
c
c variable or as a character string variable
C mode= "si " for formatted input
c "so " for formatted output
c "sqi " for unformatted input
c "sqo " for unformatted out
c “"di " for keyed input
C "do " for keyed output
c
character name*8,fname*6,modex
fmt="(4hfile,i2) "
if (lunit .le. 9) fmt="(5hnfil
encode (fname,fmt) iunit
c
call 10 ("attach",fname,"vfile
call io0o ("open",fnamermode)
return
c

entry closer(iunit)
endfile iunit
fmt="(4hfile,il)
if Ciunit .le. 9)
encode (fname,fmt)
call 10 ("close",fname)
call io0 ("detach'",fname)
return

end

fmt="(5hfil
iunit

e0r,i1)"

PROGRAM NAME: BIGSTA

Awuthor: Harold Johnson

Purpose of the program: bigsta compiles statistics on
the reference and coordinate files.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: bigsta

Arguments: None

Subroutines called: ftnumber,
out2_bigsta, bigcal_bigsta

Common data referenced: ncd

outi_bigsta,

Input files: coorNM, cordNM, statNM, strdNM,
counNM, curdNM, cntrNM, ctrdNM, gridNM,
refNM, areaNM, redyNM, measNM, bordNM

Output files: Listing

Arrays used: None

Called by: None

Error checking and reporting: None

Constants: None

Program logic:

1. The user is asked for the FIPS for the State whose
files are being processed.

2. This number is concatenated with coorNM and
cordNM that are then passed to out_bigsta,

APPENDIX C

which calculates the number of records in these
files, the number of header cards, the number of
data points, and the sum of the perimeters for
these outlines. These data are written to the user.

3. The number of header cards is used by bigsta to
compute the number of cards in comxNM. This is
written to the user.

4. The State code is concatenated with statNM and
strdNM and passed to out1_bigsta, which makes
the same calculations for these files, writing the
results to the user.

5. The same steps are used to process counNM and
curdNM.

chkkkkxk BIGSTA *kkkkkk
c

211

6. The same steps are used to process cntrNM and
ctrdNM.

7. bigcal_bigsta is called directly to process
gridNM.

8. The State code is concatenated with refNM and
passed to out2__bigsta, which counts the cards in
the reference file.

9. The user is asked whether there are more files to
be processed. If she names one, out2_bigsta is
called to count its cards.

10. When no more files are to be processed, the pro-
gram gives a grand total of the number of cards in
all these files.

external ftnumber(descriptors), closer
c
common ncd
character state*2, iblank*1l, filename*6, mode*4, outfile*
\c6b, no*é
c PROGRAM UPDATED AS OF DEC. 27, 1976 H. JOHNSON

c

¢ converted to Multics May 23,
data no/"no "/
data iblank/"™ "/

1977 by h johnson

COMX

¢ THIS PROGRAM COMPILES STATISTICS ON THE FOLLOWING FILES:
¢ COOR,CORD,COMX,STAT,STRD,COUN,CURD,CNTR,CTRD,GRID,PARA,REF,
c FOR A USER-DESIGNATED STATE. IT ALSO ALLOWS
¢ THE USER TO SPECIFY OTHER DESIRED FILES.
c
¢ NCD WILL BE THE TOTAL NUMBER OF CARDS IN ANY OF THESE FILES.
c
write(6,900)

900 format (" TYPE THE 2-DIGIT STATE CODE FOR THE STATE",

&'" BEING STUDIED. HIT RETURN.")

read(5,910)state

910 format (a2)
c

ncd=0
c
¢ THIS ENABLES THE OPERATOR TO SELECT THE STATE.
c
¢ THE FIRST FILE IS COOR, FROM WHICH CORD AND
¢ CAN BE EVALUATED.
c

encode (outfile,912)state

912 format ("coor",a2)
encode(filename,913)state
913 format ("cord",a2)
mode = "si "
c
nfile = 10

call outl_bigsta(outfile,filename,mode,nheadr,nfile)

212

IS THE
NHEADR

o000 .0

920

c NOW DO
10

923

924

c NOW DO
20

925

926

c

c NOW DO
30

927

928

c
c NOW DO

929
40

GEOINDEX

OUT1 USES OUTFILE FILE TO WRITE THE OUTPUT FOR THE
COORDINATE FILE AND ITS RADIAN ANALOGUE. NHEADR

NUMBER OF HEADER CARDS IN THE FILE.
IS USED NEXT TO FIND THE SIZE OF COMX

ncd=ncd+nheadr

write(6,920)state,nheadr
format ("OTHE FILE comx",a2," IS ON ",i5," CARDS.")

STAT AND STRD.
nfile = nfile + 2
encode (outfile,923)state
format ("stat",a2)
encode(filename,924)state
format ("strd",a?)
call outl _bigsta(outfile,filename,mode,nheadr,nfile)

COUN AND CURD.
nfile=nfile+2
encode (outfile,925)state
format ("coun",a?)
encode(filename,926)state
format ("curd",a?)
call outl bigsta(outfile,filename,mode,nheadr,nfile)

CNTR AND CTRD.
nfile=nfile+2
encode(outfile,927)state
format("cntr",a2)
encode(filename,928)state

format ("ctrd",a?)
call outl_bigsta(outfile,filename,mode,nheadr,nfile)

GRID.
encode(outfile,929)state
format ("grid'",a2)
nfile=nfile+2
call ftnumber(nfile,outfile,mode)

call bigcal_bigsta(nfile,perim,ncards,nrads,npoint,nheadr,outfile)

930
\C",

write(6,930)outfile,ncards,npoint,nheadr,perim
format ("OTHE FILF ",a6," IS ON ",i5," CARDS AND INVOLVES

&i6," DATA POINTS"/" FOR ",i4,"MAP OUTLINES OF TOTAL ",
&"LENGTH ,",£f10.3," INCHES.")

ncd=ncd+ncards

c NOW COUNT THE CARDS IN THE REMAINING FILES.

encode(outfile,932)state,iblank

APPENDIX C 213

932 format("ref",a2,al)
43 nfile=nfile+2
call out2 bigsta(outfile,nfile,mode)

¢ THIS SUBROUTINE RUNS THROUGH THE FILE OUTFILE
c AND COUNTS THE CARDS. IT THEN WRITES THE TOTAL.
c
encode(outfile,939)state
939 format("area',a2)
nfile = nfile + 2

call out2_bigsta(outfile,nfile,mode)
c
encode(outfile,933)state
933 format ("redy",a2)
nfile = nfile + 2

call out2 bigsta(outfile,nfile,mode)
c
encode (outfile,934)state
934 format ("meas",a2)
nfile = nfile + 2

call out2 bigsta(outfile,nfile,mode)
c
encode(outfile,935)state
935 format ("bord",a2)
nfile = nfile + 2

call out2_bigsta(outfile,nfile,mode)

0o nn0n

¢ NOW ASK THE USER IF THERE ARE ANY OTHER CARD FILES

¢ WHICH HE WOULD LIKE COUNTED.

(o]

50 write(6,940)

940 format ("OIF THERE ARE MORE CARD FILES TO BE COUNTED",/
&",TYPE THE NAME OF ONE. OTHERWISE, TYPE ""no"" AND",
&" HIT RETURN")
read(5,950)outfile

950 format (ab)
if (outfile .eq. no) go to 100
60 nfile=nfile+2
call out2 bigsta(outfile,nfile,mode)
go to 50
c
100 write(6,960)ncd
960 format ("O**x*xx* THE TOTAL NUMBER OF CARDS IN THESE FILES
\cIS",110)

c
do 120 k¥ = 10, nfile, 2
call closer(k)

120 continue
c

end
c *kkkkk%x END BIGSTA **kkkk%

214
SUBROUTINE NAME: OUT1_BIGSTA

Author: Harold Johnson
Purpose of the program: out1_bigsta associates For-
tran numbers with two file names. It also calls
bigcal__bigsta to perform calculations on these files.
It reports the results by writing a message to the user.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call outl_bigsta (outfilefilename,-
mode,nheadr,nfile)
Arguments:
outfile—The name of a coordinate file, such as
coorNM, statNM, counNM, or cntirNM
filename-The name of the radian file that cor-
responds to the coordinate file outfile

C Rk kkkkk

SUBROUTINE OUTT1_BIGSTA

GEOINDEX

nheadr—The number of header cards in outfile
nfile— A Fortran file number

Subroutines called: ftnumber, bigcal__bigsta

Common data referenced: ncd

Input files: None

Output files: None

Arrays used: None

Called by: bigsta

Error checking and reporting: None

Constants: None

Program logic:

1. Assoc is called to associate nfile to outfile.

2. bigcal_bigsta is called to compute the total
perimeter of the outlines in outfile, the number of
cards in outfile, the number of cards in filename,
and the number of header cards in outfile.

3. The results are reported to the user.

kk kkk kk

subroutine ovutl_bigsta(outfiler,filenamermodersnheadr,nfile)

character outfilexé6,
common ncd

filenamex6,

modex*4

CARDS AND INVOLVES ".

",14," MAP OUTLINES OF TOTAL LENGTH ",

CARDS AND INVOLVES ".»

c
¢ SUBROUTINE USED IN BIGSTA PROGRAM
¢ Converted to Multics May 24, 1977 by H Johnson
c
call ftnumber(nfilesoutfilesrmode)
call bigcal_bigsta(nfilesperimsncarassnradsesnpointsnheadrsoutfite)
write(6,900)outfilesncardssnpointsnheadrsperim
900 format("UTHE FILE ",ab6," IS ON ",i5,"
1i0s" DATA POINTS "/" FOR
f10.3," INCHES.")
write(6,930)filenamesnradssnpoint
939 format("UOTHE FILE ",a6," IS ON ",i5,"
i6+" DATA POINTS.'™)
c
ncd=ncards+tnrads+ncd
c
110 return
end

C #xkukr® END OUTT_BIGSTA *#weanx

SUBROUTINE NAME: OUT2_BIGSTA

Awuthor: Harold Johnson

Purpose of the program: out2_bigsta is used to count
the records in a file.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call out2_bigsta (outfile,nfile,mode)

Arguments:
outfile—The name of a file
nfile— A fortran number that is to be associated with
outfile mode— Specifies input or output
Subroutines called: ftnumber
Common data referenced: ncd
Input files: None
Output files: None

APPENDIX C

Arrays used: None
Called by: bigsta

Error checking and reporting: Any read error is
reported and control is returned to the calling pro-

gram.

215

Constants: None

Program logic:

1. Outtfile is associated with the fortran number nfile.

2. Cards are successively read into (Al) format, one
character per card, and counted.

C #**xkxhxx SUBROUTINE OQUT2_BIGSTA #*xxaxxx
subroutine outl2_bigstal(outfiles,nfile,mode)

character outfilex6,
common ncg

mode x4

call ftnumber(nfilesoutfilesmode)
kount = U
1 read(nfile,900,end=100,err=110)a
904 format(a1l)
kountskount+1
go to 1
c
100 continue
write(6,91d)outfilerkount
910 format("OTHE FILE ",a6," IS ON ",i5," CARDS.™)
C
ncd=ncd+kount
return
o
1170 write(6,920) outfile
920 format("OTHERE SEEMS TO BE AN ERROR IN THE FILE :",ab)

return
C
end

SUBROUTINE NAME: BIGCAL_BIGSTA

Awuthor: Harold Johnson
Purpose of the program: bigcai_bigsta compiles
statistics on the coordinate files and on their radian
counterparts.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call bigcal _bigsta (nfile,perim,ncards,-
nrads,npoint,nheadr,outfile)
Arguments:
nfile— A fortran file number
perim— The total length in inches of the outlines in the
coordinate file with number nfile
ncards— The total number of cards in nfile
nrads— The total number of cards in the radian file
that corresponds to this coordinate file
npoint—The total number of data points in the coor-
dinate file or radian file
nheadr—The total number of header cards found in
these files (which is used to tell the number of
outlines)

Subroutines called: prim_bigsta,
irads_bigsta

Common data referenced: None

Input files: None

Output files: None

Arrays used: None

Called by: out1_Dbigsta, bigsta

Error checking and reporting: On a read error, control

returns to the calling program.

Constants: None

Program logic:

1. A record is read as a header card from nfile.

2. icards__bigsta is called to calculate the number of
data cards that should follow for this header card.

3. irads_bigsta is called to calculate the number of
data cards that should follow this header in the ra-
dian file.

4. ncards, nheadr, nrads, and npoint are updated.

5. prim_bigsta is called to calculate the length of the
outline whose coordinate points follow. perim is up-
dated.

icards__bigsta,

216 GEOINDEX

C *xxxkxkx SUBROUTINE BIGCAL_BIGSTA *kkxkkxk
subroutine bigcal_bigygsta(nfilesperimsncardssnradss,npoint,nheadr,outfile)
character outfilexb

SUBROUTINE USED IN MAIN PROGRAM "BIGSTA"™

UPDATED AS OF DEC. 27, 1976 He JOHNSON

THIS SUBROUTINE COMPILES STATISTICS ON THE FILE NFILE AND
THE CORRESPONDING RADIAN FILE, IF ONE EXISTS.
INITIATE

subroutine used in program bigsta.
converted to multics May 23, 1977, H Johnson

OO0 000 600000000

perim=0.
ncards=U
nrads=0

npoint=y
nheadr=0

1 read(nfile,900,end=1000,err=1100)if,ifnos,isfr,isfnor,nots,nor,nif
901 format(7i5)
ic=icards_bigsta(isfno)
ncards3ncards+l+ic
ir=irads_bigsta(isfno)
nrads=nrads+1+ir
npoint=npoint+isfno
nheadr=nheadr+1
call prim_bigsta(nfilerisfnor,dist)
perim=perim+dist
4o to 1
1000 return
c
1100 write(6,910)outfite
910 format("UTHERE SEEMS TO BE AN ERROR IN FILE :",a06)

return
c
c
end
FUNCTION NAME: IRADS_BIGSTA isfno— A certain number of data points
A . Subroutines called: None
uthor: Harold Johnson

Purpose of the program: irads__bigsta calculates the Commo.n dfzta referenced: None
number of cards in a radian file that must be used to | ["Put files: None

contain isfno data points. Output files: None
Data base: Geoindex Arrays used: None
Computer: Honeywell Series 60 (level 68) Called by: bigcal_bigsta
Operating system.: Multics Error checking and reporting: None
Calling sequence: ir = irads__bigsta (isfno) Constants: None
Arguments: Program logic:

irads— The number of cards needed to hold jsfno data | 1. Similar to icards_bigsta, except that only three
points in a radian file data points can occur on radian coordinate files.

APPENDIX C

217

¢ *xxxsxxx FUNCTION IRADS_BIGSTA *xxkwix

function
irads_bigsta=isfno/3
if(3*irads_bigsta .lt.
return

end
c **xxkxx END JRADS_BIGSTA *xkthkx

irads_vigstalisfno)

isfno)irads_bigstasirads_bigsta+l

SUBROUTINE NAME: PRIM_BIGSTA

Awuthor: Harold Johnson
Purpose of the program: prim_bigsta calculates the
length in inches of an outline in one of the coordinate
files (coorNM, statNM, counNM, gridNM).
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call prim_bigsta (in,isfno,finch)
Arguments:
in— A fortran file number
isfno—The number of data points on the next and
following cards that describes an outline
finch— The length in inches of the outline described by
the data points
Subroutines called: None
Common data referenced: None

Input files: None

Output files: None

Arrays used: xx(6), yy(6)

Called by: bigcal__bigsta

Error checking and reporting: None

Constants: None

Program logic:

1. First, the number of data cards that contain isfno
points is calculated.

2. The first data card is read. If isfno is 2, control
returns because the first data point is used to posi-
tion characters that name the outline.

3. The length of the segments described by this first
card is calculated.

4. If more cards remain in this outline file, they are read
one by one, and their outlines are calculated and
added to the running total.

ncardl + 1

finch=finch+sqrt((xx(k)=xx(k=1))**x2+(yy(k)=yy(k=1))*xx2)

C *kxxkhkx SUBROUTINE PRIM_BIGSTA *kakkkx
subroutine prim_bigsta(insisfnor,finch)
c
¢ subroutine used in main statistics program "bigsta"
¢ converted to multics May 23, 1977 H Johnson.
c
dimension xx(6),yy(6)
finch = 0,
ncardl=isfno/o
if(6*xncardl .lt. isfno) ncardl =
read(in,210) (xx(i),yy (i) si=1,6)
914 format(12f6.3)
ifCisfno ,eq. 2) return
ilast = 6
if(isfno lt. 6) ilast = isfno
do 10 k=3,ilast
10 continue
xlast=xx(6)
ylast = yy (o)
if(ncardl .eq. 1) return
if (ncardl .eq. Z2) go to 25
nl=ncardl - 1

do 20 j=2.nl

read(in,91U) (xx(i),yy(i),i=1,6)

218

GEOINDEX

finch=finch+sqrt((xx(1)=-xtast)**x2+(yy(1)-ylast)*x2)

finch=finch+sgrt((xx(k)=xx(k=1))**2+(yy(k)=yy(k=1))xx2)

finch=finch+sgrt((xx(1)=-xlast)**x2+(yy(1)-ylast)**2)

finch=finch+sqrt((xx(k)=xx(k=1))**x2+(yy(k)=yy(k=1))*x2)

do 15 k = 2,6
15 continue
xlast=xx(6)
ylast=yy(6)
20 continue
25 read(in,910) (xx(i),ryy(i),i=1,6)
ilast = isfno - (ncardl=1)x*6
if(ilast .eqge. 1) return
do 30 k = 2+,ilast
30 continue
return
end

C *hhhkhk

END PRIM_BIGSTA *%xwxxxx

FUNCTION NAME: ICARDS__BIGSTA

Awuthor: Harold Johnson

Purpose of the program: icards__bigsta is used to com-
pute from the isfno number in a coordinate file the
number of data cards that should follow in order to
contain the indicated number of points.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: ic = icards_ bigsta(isfno)

Arguments:
ic—The number of cards that are required to hold

isfno data points

isfno— A certain number of data points

Subroutines called: None

Common data referenced: None

Input files: None

Output files: None

Arrays used: None

Called by: bigcal__bigsta

E'rror checking and reporting: None

Constants: None

Program logic:

1. A maximum of six data points are on each card, so
icards__bigsta is isfno/6 unless 6 does not divide
isfno, in which case one more card must be used.

¢ *xxkxxx FUNCTION ICARDS_HBIGSTA *xkwxwnx

function
icards_bigsta=isfno/é
if(6*xicards_bigsta .lt.,
return
c
end
C **xxxx*xx END ICARDS_BIGSTA *#xxnkkw

icards_bigsta(isfno)

isfno)icards_bigsta=icards_bigsta+l

EXEC_COM NAME: USMERG.EC

Awuthor: P. A. Fulton

Purpose of the program: usmerg.ec, written in the
Multics command language, takes as input a newly
created indxNM file and appends it to the existing in-
dxus. indxus is the GRASP file that contains all the
States. The output file is named usall. At the end of
the run it is dprinted for checking.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)
Operating system: Multics

Calling sequence: ec usmerg NM
Arguments: NM—~FIPS code for the State
Subroutines called: setmas, GRASP
Common data referenced: None

Input files: indxus, indxNM

Output files: usall

Arrays used: None

Called by: None

APPENDIX C

Error checking and reporting: None

Constants: None

Program logic:

1. command__line is turned off.

2. Attach the exec__com to the program setmas.

3. The exec__com contains two responses to prompts in
the program setmas.

&command_Lline off
&attach
setmas
2 us ol
yes
&detach
gattach
grasp
indxus
append
usaltl
indxus
indx&1
y~
quit

b4

1.2
gdetach
&quit

219

4. When setmas is terminated, the program is detached
from the exec__com.

5. The exec__com is attached to the program GRASP.

6. GRASP is executed. The exec__com contains responses
to prompts made in GRASP.

7. Detach the files.

8. Quit.

PROGRAM NAME: STATE_TO_TAPE

Author: Harold Johnson

Purpose of the program: state_to_tape enables a
user to copy all the State files for one State onto a
backup tape, using IBM tape characteristics.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: state__to__tape

Arguments: None

Subroutines called: sts__begin, heading_state_to_
tape, up_file_number, disk_to_tape_fb_-
retain.ec, disk_to_tape_vbs_retain.ec, iist_-
state__tape.ec, date__time

Common data referenced: None

Input files: bginNM, coorNM, cordNM, statNM,
strdNM, counNM, curdNM, gridNM, bordNM,
cntrNM, paraNM, redyNM

Output files: None

Arrays used: file_name(12)

Called by: None

Error checking and reporting: If the user has not sent a
message to the operator to locate his tape, the program
will abort.

Constants: None

Program logic:

1. The user is asked to type 1 if he sent a message to
the operator to find his tape; otherwise, 0. The
user’s response is read into ians.

If ians does not equal 1, the program stops.

. Prompt:

TYPE YOUR TAPE ID.
The response is read into tape__number.

4. Prompt:

TYPE THE 2-DIGIT FEDERAL STATE
NUMBER CODE FOR THIS STATE, USING
FORMAT A2

Response is read into state__number.

5. Prompt:

TYPE THE NAME OF THIS STATE.
Response is read into state__name.

6. The user is asked which file number to use. The

response is read into file_number.

0 1o

220 GEOINDEX

7. Subroutine sts_begin is called to set up a temp- | 11. Subroutines up_file_number and disk _to_-
orary disk file that will contain a description of the tape_vbs__retain.ec are called for the last three
records to be read into the bginNM file. input files as they are recorded with the VBS tape

8. Subroutine heading_state_to_tape is called to option.
set up file81 containing a description of the files | 12. Call list_state_tape.ec, which prints out the tape
being copied. label and the file name and numbers.

9. Call subroutine up__file_number. 13. Call date__time.

10. Call disk_to_tape_fb_retain.ec. 14. End.

PROGRAM state_to_tape

PURPOSE: To enable a user to copy all the state files for one
state onto a backup tape, using IBM tape characteristicse.

PROGRAMMER: H Johnson
DATE: Jan 13, 1978

O o000 00 o0 oaon

character tape_numberx6, file_namex4(12), file_numberx*?
character state_number*2, state_name*36, filex6
c
data file_name/"bgin","coor","cord”,"stat","strd”,"coun","curd"”,
"grid”,"bord","cntr","para","redy"/
c
c
write(6,910)
91J format("OIFf YOU HAVE SENT A MESSAGE TO SYS OP TO FIND YOUR™"/
" TAPE, TYPE 17 OTHERWISE, TYPE 0")
read(5,915) ians
915 format(il)
if(ians .ne. 1) stop
c
write(6,920)
920 format("OTYPE YOUR TAPE 1ID:")
read(5,925) tape_number
925 format(aé)
c
write(6,927)
927 format("OTYPE THE 2-DIGIT FEDERAL STATE NUMBER CODE"/
" FOR THIS STATE., USING FORMAT A2™)
read(5,928) state_number
928 format(al)
c
write(6,930)
930 format("OTYPE THE NAME OF THIS STATE:"™)
read(5,935) state_name
935 format(a3e6)
c
writed(6,940)
940 format("OTYPE THE FILE-NUMBER OF THE TAPE FILE JuST"/
" QDEFORE THE PLACE WHERE YOU WANT TO BEGIN WRITING THIS STATE."/
"OIF YOU ARE WRITING THE FIRST STATE ON THIS TAPE, TYPE 007"/
" IF ADDING TO A PREVIOUS STATE, TYPE THE LAST FILE NUMBER,"/

APPENDIX C 221

" IF WRITING OVER A PREVIOUSLY WRITTEN VERSION, TYPE THE FILE"/
" NUMBER JUST AHEAD OF THE PLACE WHERE YOU WANT TO BEGIN."/
“"OPLEASE TYPE THIS NUMBER FORMAT AZ2:")
c

read(5,945) file_number
945 format(a?l)
c
C NOW SET UP A TEMPORARY DISK FILE WHICH WILL CONTAIN A
¢ DESCRIPTION OF THESE RECORDS, TO B3E READ INTO THE BGIN FILE.
c

call sts_begin(state_number,state_name.file_number)
THIS SETS UP A FILE 81 CONTAINING A DESCRIPTION OF
THE FILES BEING COPIED.

OO 0o

call heading_state_to_tape(state_number.,tape_number)
c
do 50 1=1, 9
encode(filer,950) file_name(i), state_numper
950 format(abe.al)
c
call up_file_number(file_number)

call ec ("disk_to_tape_fb_retain”,tape_number.file,file_number)
gO continue
‘ do 60 1=10., 12
gncode(filep950) file_name(i), state_number

call up_fite_number(file_number)

call ec ("disk_to_tape_vbs_retain”",tape_number.,file,file_number)
ZO continue
::: THE LAST 3 FILES ARE RECORDED WITH THE VBS TAPE OPTION,
‘ call ec ("list_state_tape",tape_number)

call date_time

end
SUBROUTINE NAME: Computer: Honeywell Series 60 (level 68)
HEADING_STATE_TO_TAPE Operating system: Multics
Calling sequence: call heading_state_to_tape
Author: Harold Johnson (state,tape__number)

Purpose of the program: heading_state_to_tape | Arquments:

writes headings for the output of the state_to_tape | state—Two-digit FIPS State code

program. tape_number— Six-position volume number
Data base: Geoindex Subroutines called: None

222 GEOINDEX

Input files: None 1. Write to the terminal:

Output files: None THE FOLLOWING DISK FILES FROM THE
Avrrays used: None STATE WITH FEDERAL CODE NM HAVE
Called by: state__to__tape BEEN STORED ON TAPE XXXXXX FOR
Error checking and reporting: None ! BACK-UP:

Constants: None 2. Return control to state__to__tape.

Common data referenced: None l Program logic:
|
|
|

1

¢ the name of this file is: headinyg_state_to_tape.fortran

subroutine heading_state_to_tape(state,tape_number)
PURPOSE: TO WRITE HEADINGS FOR THE OUTPUT OF THE
STATE-TJI-TAPE PROGRAM,

programmer: H Johnson
date: August 27, 1977

O O 0 o0 00

character state*2, tape_numbder*6
C
write(6,910)
P10 format (MO kkkk ok sk Ak Ak A KA KA A A A KA AR N AN A AR A AN AR AN A AR AR Ak k&™)
C
write(6s,920)statestape_number
920 format("0",5X,"THE FOLLOWING DISK FILES FROM THE STATE ",
"WITH FEDERAL CODE ",a2,/" HAVE BEEN STORED ON TAPE ",ab.,
" FOR BACK=-uUP:™)
C
C
return
end

SUBROUTINE NAME: UP_FILE_NUMBER ; Input files: None
. i Output files: None
Author: Harold Johnson i Arrays used: None
Purpose of the program: up_file_number increments | Called by: state_to_tape, pull_oft
file_number, given in character format, by 1 and | E77ror checking and reporting: None
returns the new value in character format. + Constants: None

Data base: Geoindex | 113 T%T@m l;}lgiz: de statement. th ds ifil
Computer: Honeywell Series 60 (level 68) - Using the decode statement, the program reads /7ile
!

. . from file_number and stores it into a format of
Operating system: Multics (i2)

i

[

|
Calling sequence: call up__file__number (file_number) | 2. Add 1 to ifile.
Arguments: file_number—Numerical sequence on tape ' 3. Using the encode statement, the program transmits

Subroutines called: None ; the value of ifile to file_number.

Common data referenced: None | 4 . Control is returned to the calling module.

¢ FILE NAME: up_file_number,fortran

c

¢ PURPOSE: to increment a number, file_number, given in character format.,
c by 1 and return the new value in character format.

c

¢ PROGRAMMER:H Johnson

¢ DATE: August 27, 1977

c

subroutine up_file_number(file_number)

APPENDIX C 223

C
character statex?2, tape_numpberx*d, file_number=*2

9990 format("file_number = ",ab)

c

decode(file_number,910)ifile

910 format(i2)

c

ifile = ifile + 1

c

encode(file_number,9210) ifile

c

return

end

SUBROUTINE NAME: STS_BEGIN Constants: None
Program logic:

Awuthor: Harold Johnson 1. The file name bgin and the State code are con-

Purpose of the program: sts_begin sets up a tem- catenated by the encode statement to form
porary disk file that will contain a description of the in- bginNM.
put records and will give the user the file number of | 2. Call ftnumber to open and attach file81 to bginNM
each file written to tape. for sequential input and output.

Data base: Geoindex 3. n = file_number + 1.

Computer: Honeywell Series 60 (level 68) 4. Prompt to file81:

Operating system: Multics THIS IS THE FIRST FILE FOR STATE

Calling sequence: call sts_begin (state, state _name,- NUMBER NM NAME STATE_NAME.
file__number) 5. Prompt to file81:

Arguments: BEGINNING IN TAPE FILE NUMBER n
state —Two-digit FIPS code THE FOLLOWING STATE FILES ARE
state_name —Name of the State WRITTEN ON THIS TAPE!
file_number—Number of the tape file 6. Prompt to file87:

Subroutines called: ftnumber, up__file__number coorNM IS IN FILE NUMBER n.

Common data referenced: None 7. Add 1 to n.

Input files: None 8. Subroutine writes a message for the next file cord-

Output files: File number: file81 NM and repeats steps 7 and 8 until a message has

Arrays used: None been written for each input file.

Cualled by: state__to__tape 9. Rewind 81.

Error checking and reporting: None 10. Return control to state_to__tape.

subroutine sts_begin(statesstate_name,file_number)

character statex*2, state_name*36, file_namex6, modex4

character n*2, file_numberx»?2
c

encode(file_name,910) state
910 format("bgin",a2)
c
mode="so "

call ftnumber(d8l1,file_name,mode)
c
n = file_number

call up_file_number (n)

call up_file_number(n)

write(31,912) state, state_name

224 GEOINDEX

“",a2e

912 format("This is the first file for state number
" name ",a36)
(o
write(31,920) n
920 format("Beginning in tape file number
"files are written on this tape:")
write(81,925) staters n
925 format("coor"”,a2,” is in file number ",a2)
call up_file_number(n)

ra2s" the following state "/

c
write(81,935) state, n

935 format(”cord”+,a2.," is in file number ",a2)
call up_file_number(n)

c
write(31,940) states, n

94 format("stat",a2," is in file number ".,a2)
call up_file_number(n)

c
write(81,945) state., n

945 format{("”strd",a2,"” is in file number ".,a2)
call up_file_number(n)

c
write(81,950) state, n

950 format("coun",a2,"” is in file number ",a2)
call up_file_number(n)

c
write(81,955) states n

955 format("curd",a2s"” is in file number ".a2)
call up_file_numoer{n)

c
write(81,960) states, n

960 format("grid",a2," is in file number ",al)
call up_file_number(n)

c
write(81,965) states, n

965 format(”bord"s,al," is in file number ",a2)
call up_file_number(n)

c
write(81,970) states, n

970 format("cntr",a2,"” is in file number ",a2)
call up_file_number(n)

write(81,975) states, n

975 format("paras,ales" is in file number ",a2)
call up_file_number(n)

c
write(81,9580) states, n

980 format("redy",a2," is in file number ",a2)

c
endfile 381

call closer(81)
c
return

end

APPENDIX C

EXEC_COM NAME:
DISK_TO_TAPE_FB_RETAIN.EC

Awuthor: Harold Johnson

Purpose of the program: disk _to__tape_fb_ retain.ec
writes files to tape using fixed block format.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call ec (“disk__to_tape_fb_retain”,-
tape__number,file,file__number)

Arguments:
tape_number—Six-position volume number
file —Name of input file
file_number—Number of the file on tape

disk-to-tape-fb-retain.ec
cpf -ids

-nm &2 -fmt fb =-rec BU -bk 8UU0

“"record_stream_ -target vtile_ &2" =-ods "tape_ibm_ &1
-den 300 =-cr

225

| Subroutines called: None

. Common data referenced: None

. Input files: bginNM, coorNM, cordNM, sta tNM,

| strdNM, counNM, curdNM, gridNM, bordNM

I Output files: Input files are put on tape.

; Arrays used: None

| Called by: state_to__tape

Error checking and reporting: None

Constants: None

Program logic:

1. Using the COPY_FILE command and the I/O
module, tape_ibm, the program writes the file to
tape with a fixed block format, record length of 80.
It is written in the file number designated by
file_number with the name designated by file.

2. Control is returned to the calling module.

i
|
H
|
|
|
i

-nb &3

-ret atl =-rg”

EXEC_COM NAME:
DISK_TO_TAPE_VBS_RETAIN.EC

Awuthor: Harold Johnson

Purpose of the program: disk_to_tape__vbs__retain.ec
writes files to tape using spanned record format

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call ec (“disk_to_tape_vbs_ retain”,
tape number file,file__number)

Arguments:
tape__number— Six-position volume number
file—Name of the input file
file_number— Number of the file on tape

disk-to-tape-vbs-retain.ec

cpf =-ids "record_stream_ -length
&1 =-nb &3 =-nm &2 -fmt fo -rec 140
all -ryg"

| Subroutines called: None

. Common data referenced: None

. Input files: cntrNM, paraNM, redyNM

. Output files: The input files are written to tape.

| Arrays used: None

| Called by: state_to_tape

¢ Error checking and reporting: None

. Constants: None

* Program logic:

- 1. Using the COPY_FILE command and the I/O
' module, tape_ibm, the program writes cntrNM,
, paraNM and redyNM to tape using the spanned
; record format. The input description specifies a
; record length of 100.

| 2. Control is returned to the calling module.

100 -taryget vfile_ &2" -ods "tape_ibm_

-bk 8000 -den 8UU =cr -ret

EXEC_COM NAME: LIST_STATE_TAPE.EC

Awuthor: Harold Johnson

Purpose of the program: list_state_tape.ec lists the
contents of the tape.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call ec (“list_state_tape”,
tape__number)

Arguments: tape_number— Six-position volume
number

. Subroutines called: None

+ Common data referenced: None

. Input files: Tape used in state_to_tape module

Output files: None

Arrays used: None

Called by: state__to__tape, pull off

Error checking and reporting: None

Constants: None

Program logic:

1. The command is LIST_TAPE_CONTENTS &1
-LONG -IOM TAPE_IBM. The information

226

printed by this command is extracted from the tape
labels.

2. The -long argument prints the file identifier (id), the
file sequence number (number), the record format
(format), the physical block size (b/ksize), the
logical record length (Irecl), the encoding mode
(mode), the file creation data (created), the file ex-
piration date (expires), the file-set section number

list_tape_contents 51 =-long

GEOINDEX

(section), the file version number (version), the
file generation number (generation), and the
operating system that recorded the tape (system).

3. The -iom argument invokes a system I/0O module to
attach and read the specified tape volume. The
tape_ibm__ subroutine is specified in order to list
OS standard labeled tapes.

4. Control is returned to the calling program.

-iom tape_ibm_

PROGRAM NAME: PULL_OFF

Awuthor: Harold Johnson

Purpose of the program: pull_off enables the user to
pull off files from the Geoindex State files, and writes
the selected files to disk.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: pull__off

Arguments: None

Subroutines called: state_pull_off, separate_pull_-
off

Common data referenced: None

Input files: User tape containing State files

Output files: Files retrieved from the input tape

Arrays used: None

Called by: None

Error checking and reporting: None

Constants: None

© %

PROGRAM: pull_otf

PROGRAMMER:
DATE :

H Johnson
Feoruary 14, 1978

INPUT FILES:
OUTPUT FILES:

A user tape.,

OO0 000000

character tape_number*32
c

write(6,910)
910 format("
" BACK TO DISK."/
" xxx WARNING:

in your directory or
” ” /

-

Program logic: .

1. The user is informed that she must know the tape
number, State number code, and file names, or she
has the option of pulling off all the files for one
State. If only selected files are to be pulled off, the
user must know their file numbers on the tape, and
the names and file numbers must be entered in
ascending order according to the order on the tape.

2. Prompt:

NOW TYPE THE TAPE ID:

The user’s response is read into tape__number.

Prompt:

IF YOU WANT THE ENTIRE SET OF FILES
FOR A STATE, TYPE A 1; OTHERWISE,
TYPE 0.

The users response is read into ians.

If ians is not equal to 1, go to step 8.

Call subroutine state__pull_off. Upon return, go to

step 9.
Call subroutine separate__pull_off.
Stop.

N

containing state files.
Whatever files were retrieved from the tape.

THIS PROGRAM ENABLES YOU TO PULL OFF FILES FROM A TAPE"/

be sure these files do not already exist"/
in tinks to another directory!!t!!"/

" IT IS ASSUMED THAT THESE ARE FILES FROM OUR STATE FILES."/

" YOU MUST KNOW THE TAPE NUMBER.,

STATE

NUMBER CODE» AND FILE NAMES"/

" OR, YOU CAN PULL OFF ALL THE FILES FOR ONE STATE."/

APPENDIX C

" IF YOU WANT ONLY SOME STATE FILES,
THEN YOU MUST ENTER THE NAMES AND NUMBERS IN "/

" ON THE TAPE,.

227
YOU MUST KNOW THEIR FILE NUMGER"/

" INCREASING ORDER ACCORDING TO THE ORDER ON THE TAPE."/

” " /

" NOW TYPE THE TAPE ID ")
read(5,920)

920 format(a32)

c

tape_number

¢ NOW DETERMINE WHETHER OR NOT THE USER WANTS A WHOLE STATE.

c
write(6,930)
930 format("
" TYPE A 17 OTHERWISE,
read(5,940) ians
940 format(il)
if (ians .ne.

TYPE 0")

1) go to 20
c
call state_pull_off(tape_number)
go to 30
c

IF YOU WANT THE ENTIRE SET OF FILES FOR A STATE,"/

20 call separate_pull_off(tape_number)

c
30 continue
end

SUBROUTINE NAME: STATE_PULL_OFF

Author: Harold Johnson

Purpose of the program: state_pull_off determines
which States are to be retrieved from the tape and
then writes them to disk.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call state_pull__off (tape__number)

Arguments: tape_number—The six-position volume
number

Subroutines called: tape_to_disk_fb_retain.ec,
tape_to_disk_vbs_retain.ec, up_fiie_number,
list__state__tape.ec

Common data referenced: None

Input files: A user tape containing State files

Output files: bginNM, coorNM, cordNM, statNM,
strdNM, counNM, curdNM, gridNM, bordNM,
cntrNM, paraNM, redyNM

Arrays used: None

Called by: pull_off

Error checking and reporting: None

Constants: None

Program logic:
1. Prompt:

TO RETRIEVE ALL THE FILES FOR ONE
STATE, YOU MUST KNOW THE STATE

NUMBER CODE AND THE FILE NUMBER
OF THE FIRST FILE FOR THE STATE AS
IT OCCURS ON THE TAPE.
2. Prompt:
WHAT IS THE STATE NUMBER CODE?
TYPE IT FORMAT I2.
Read the response into state.
4. Prompt:
NOW TYPE THE FIRST FILE NUMBER OF
THE BGIN FILE FOR THIS STATE, FOR-
MAT A2.
5. Read the response into file_number.
Using the encode statement, concatenate the name
of the output file and the State code.
7. Call tape__to_disk__fb_retaln.ec.
8. Call up_file_number subroutine.
9
0

ad

o

. Repeat steps 6-8 for the first nine output files.

. Using the encode statement, concatenate the name
of the file and the State number.

11. Call tape__to_disk_vbs__retain.ec.

12. Call subroutine up__file_number.

13. Repeat steps 10-12 for the last three output files.

14. Call list_state__tape.ec to list the contents of the

tape.
15. Return control to the calling program.

1

228 GEOINDEX
subroutine state_pull_off(tape_number)
SUSBROUTINE USED IN pull_off

PURPOSE: To determine what state's files are to be retrieved
from a tape, and then retrieve them.

O O 0 00

character tape_numver*32, file_numberx*2, name*4(12),file*xbsrstatex?
data name/"bgin","coor"”,"cord","stat","strd","coun”,"curd"”,"gria",
“bO"d"l"Cntr”t“paranl"Y‘EGY"/
c
write(6,910)
910 format(" TO RETRIEVE ALL THE FILES FOR ONE STATE., YOU MUST'"/
" KNOW THE STATE NUMBER CODE AND THE FILE NUMBER'"/
' OF THE FIRST FILE FOR THE STATE AS IT OCCURS ON THE TAPE."/
“OWHAT IS THE STATE NUMBER CODE? TYPE IT FORMAT i2")
c
read(5,920) state
920 format(a2)
write(6,924)
924 format(" NOW TYPE THE FIRST FILE NUMBER OF THE BGIN FILE FQR"/
" THIS STATE, FORMAT AZ2"™)
read(5,927) file_number
927 format(al)
c
do 20 k = 1, 9
encode(file,930) name(k), state
930 format(abe,al)
c
call ec("tape_to_disk_fb_retain",tape_number,file,file_number)
caltl up_file_number(file_number)
c
20 continue
c
do 50 k = 10,12
c
encode(file,9230) name(k), state
c
c
call ec ("tape_to_disk_vbs_retain",tape_number,filer,file_number)
c
call up_file_number(file_number)
50 continue
c
call ec ("list_state_tape",tape_numver)
c

call date_time
c

return
end

SUBROUTINE NAME: SEPARATE_PULL_OFF Data base: Geoindex
Author: Harold Johnson Computer: Honeywell Series 60 (level 68)
Purpose of the program: separate_pull_off determines Operating system.: Multics

which State files are to be retrieved from tape and Calling sequence: call _separate_pull_off (tape_-
then writes them to the disk. number)

APPENDIX C

Arguments: tape_number—Six-position volume
number
Subroutines called: tape_to_disk_fb_retain.ec,
tape__to__disk_vbs__retain.ec, list_state__tape.ec
Common data referenced: None
Input files: A user tape containing State files
Output files: Any one or more of the following: bginNM,
coorNM, cordNM, statNM, strdNM, counNM, curd-
NM, gridNM, bordNM, cntrNM, paraNM, redyNM.
Arrays used: file_name 6(25), file_number 2(25)
Called by: pull_off
Error checking and reporting: None
Constants: None
Program logic:
1. Initialize k& equal to 0.
2. k=% + 1.
3. Prompt:
TYPE THE NAME OF THE NEXT FILE YOU
WANT:
4. Read the response into file_name(k).
5. Prompt:
TYPE THE FILE NUMBER OF THIS FILE,
FORMAT A2

229

6. Read the user’s response into file__number(k).

. Prompt:

TO CONTINUE WITH MORE FILES, TYPE
1, TO STOP, TYPE 0

8. Read user’s response into ians.

9. If ians is equal to 1 go to step 2.

10. Using the decode statement, separate the file
name from the State number.

11. If the file name is cntrNM, paraNM, or redyNM, go
to step 14.

12. Call tape__to_disk_fb__retain.ec, which will write
the files to disk using fixed block format.

13. Go to step 15.

14. Call tape_to_disk _vbs_retain.ec, which will
write the files to disk using spanned record for-
mat.

15. Repeat steps 10-14 until all files have been written
to disk.

16. Call list_state__tape.ec to list the contents of the
tape.

17. Return control to the calling program.

-3

subrodtine separate_pull_off(tape_number)

¢ PURPOSE:

o THEN RETRIEVE THEM.
C
c
character tape_numoer*32,
c
character namex4, numberx?
character ipara*bdsicntrxbé,iredyxs
data icntr/"cntr”/, iparal/"para'"l,
C
k = u
10 k = k + 1
C
write(6,910)
910 format("
read(5,920) file_name(k)
92J format(ab)
write(5,930)
930 format("™ TYPE THE FILE NUMSBER OF THIS FILE,
read(5,940) file_number (k)
940 format(a?d)

c
write(6,95u0)

953 format("

" TO STUP, TYPE U™)

read(5,960) 1i1ans
960 format(il)
if (ians .eq. 1) go to 10

file_namex6(25),

TO CONTINUE WITH MORE FILES,

TO DETERMINE WHAT STATE FILES ARE TO BE RETRIEVED.,

file_number*2(25)

iredy/"redy"/

TYPE THE NAME OF THE NEXT FILE YOU WANT:")

FORMAT AZ2"™)

TYPE 1,"/

230

c
do SU j = 1, k
¢
decode(file_name(}),970)
970 format(a4,a2)
if (name .eq.
if (name ,eq.
if (name .,eq.

name»

icntr) go to 40
ipara) go to 40
iredy) go to 40

GEOINDEX

number

call ec ("tape_to_disk_fb_retain”,tape_number,file_name(jl),file_

number(j))

go to S0
c
40 call ec

number(j))

SO0 continue

c

("tape_to_disk_vbs_retain",tape_number,file_name(j),file_

call ec("list_state_tape'",tape_number)

return
end

EXEC_COM NAME:
TAPE_TO_DISK_FB_RETAIN.EC

Awuthor: Harold Johnson
Purpose of the program: tape_to_disk_fb__retain.ec
writes files to disk using fixed block format.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call ec (“tape_to_disk_fb_-
retain”,tape number,file,file number)
Arguments:
tape__number— Six-position volume number
file —Name of the file
file_number—Number of the file on tape
Subroutines called: None

tape-to-disk-fb-retain.ec

cpt -ods "record_stream_ -target vfile_ &2" -ids "tape_ibm_ &1
-den 800

-nm &2 -fmt fb -rec 80 -ok 8000

Common data referenced: None

Input files: User’s tape of the State files

Output files: Any one or all of the following: bginNM,

coorNM, cordNM, statNM, strdNM, counNM, curd-
NM, gridNM, and bordNM

Arrays used: None

Called by: state_pull_off, separate_pull_off

Error checking and reporting: None

Constants: None

Program logic:

1. Using the COPY_FILE command and the I/O
module, tape_ibm_, the program writes the
selected file to disk, as determined by file and
file_number.

2. Control is returned to the calling module.

-nb &3
-ret alt *

EXEC_COM NAME:
TAPE_TO_DISK_VBS_RETAIN.EC

Awuthor: Harold Johnson

Purpose of the program: tape__to_disk__vbs_retain.ec
writes files to disk using spanned record format.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics
Calling sequence: call ec (“tape_to_disk_vbs_-
retain”,tape__number,file,file_ number)
Arguments:
tape_number— Six-position volume number
file— Name of the input file
file_number— Number of the file on tape
Subroutines called: None

APPENDIX C

Common data referenced: None

Input files: User’s tape of State files

Output files: cntrNM, paraNM, redyNM
Arrays used: None

Called by: state_puli_off, separate__puii_off
Error checking and reporting: None

Constants: None

tape-to-disk-vbs-retain.ec

copy_file -ids "tape_ibm_ %1 =-nb &3

231

Program logic:

1. Using the COPY_FILE command and the I/O
module, tape_ibm_, program writes cntrNM,
paraNM, and redyNM to disk if specified by file
and file_number. The output description specifies,
no new line.

2. Control is returned to the calling module.

-nm &2 -fmt fb =-rec 100 -bk 8000

-den 800 =-ret all" =-ods "record_stream_ -nnl -taryet vfile_ &2"

PROGRAM NAME: BACKUP

Author: Harold Johnson

Purpose of the program: backup enables the user to
dump various segments and (or) whole directories to a
tape. They can have any file characteristic such as
ASCII, binary, or whatever happens to be in the direc-
tory to be dumped.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: backup

PROGRAM backup

PURPUSE: TO ENASLE A USER TO DUMP
DIRECTORIES TO A TAPE

PROGRAMMER: H
DATE: Dec 29,

Johnson
1977

O 0O 0O 00000

call ec ("backup")

THIS IS THE EXEC COMMAND:

backupl
10 close filelO
io detach filely
backup?

D OO0 00 o000

Arguments: None

Subroutines called: backup.ec
Common dato referenced: None
Input files: None

Output files: None

Arrays used: None

Called by: None

Error checking and reporting: None
Constants: None

Program logic:

1. The program calls backup.ec.

VARIOUS SEGMENTS AND WHOLE

EXEC_COM NAME: BACKUP.EC

Author: Harold Johnson

Purpose of the program: backup.ec calls two sub-
routines and then closes and detaches the file.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call ec (“backup”)
Arguments: None

Subroutines called: backup1, backup2
Common data referenced: None

Input files: None

232

Output files: None

Arrays used: None

Called by: backup

Error checking and reporting: None
Constants: None

backup.ec
backupi

1o close filell
io detach filel10
backup?

GEOINDEX

Program logic:

1. This exec__com executes backup1.

2. Control is then returned to the exec__com and file10
is closed and detached.

3. It then executes backup2.

EXEC_COM NAME: DUMP.EC

Author: Harold Johnson
Purpose of the program: dump.ec places segments or
directories, specified in backup1, on tape.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics-
Calling sequence: call ec (“dump”,“control.dump”,“hh;j”,-
tape)
Arguments:
control.dump—Dump control file
hhj—OQperator
tape—Tape number
Subroutines called: None
Common data referenced: None
Imput files: control.dump
Output files:
*.dump.map
possibly an error file ending with .ef
Arrays used: None

dump.ec

gattach

complete_dump %1 %2 -debug
&3

&quit

Called by: backup2

Error checking and reporting: None

Constants: None

Program logic:

1. &ATTACH allows the arguments of the exec__com to
be passed directly to complete__dump.

2. complete_dump requires a minimum of three
arguments as in the command: complete_dump:
control.dump, hhj-debug, where control.dump
is the name of a control segment, hhj represents
the author’s initials, and -debug disables calls to
highly privileged system subroutines normally
used when complete_dump is used by the
operators during the weeky system backup ses-
sion. The argument tape is the volume identifier of
the desired dump tape. One 2,400 ft. tape at 1,600
bpi can hold approximatley 7,500 disk pages
(records).

3. The segments or directories stored in control.dump
are written to tape.

4. Quit.

SUBROUTINE NAME: BACKUP1

Author: Harold Johnson

Purpose of the program: backup1 allows a user to dump
various files and directories to a tape.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call backupl

Arguments: None

Subroutines called: None

Common data referenced: None

Input files: None

Output files: control.dump used on unit 10 (file10)

Arrays used: None

Called by: backup.ec
Error checking and reporting: The user will be asked
whether he has sent a message to the operator to
locate his tape. If the user answers with other than 1,
the program will abort.
Constants: None
Program logic:
1. The user is asked whether a message was sent to
locate his tape. If the user responds with 1, pro-
cessing continues. Otherwise the program halts.

2. The program prints a message describing its pur-
pose.

3. file10 is attached to control dump and opened for
stream output.

APPENDIX C 233

4. The user is informed that segments or directories to | 6. The user’s response is read from the terminal and

be dumped must be absolute path names and in written to file10.
alphabetical order. 7. Prompt:
5. Prompt: IF YOU WANT TO DUMP MORE PATHS,
NOW TYPE IN THE ABSOLUTE PATH TYPE 1; OTHERWISE, 0
NAME OF THE NEXT SEGMENT OR | 8. The user’s response is read into ians.
DIRECTORY YOU WANT TO BACKUP. 9. If ians is equal to 1, go to 5.
Type its absolute path name. 10. Stop.

PROGRAM packupl

PURPOSE: TO ALLOW A USER TO DUMP VARIOUS FILES AND DIRECTORIES TO
A TAPE.

PROGRAMMER: H Johnson
DATE: Dec. 29, 1977

OO0 0 00000

character path*60
c
write(6,900)
900 format(" DID YOU SEND A MESSAGE TO THE OPERATOR TO "
“FIND YQUR TAPE?"/" IF YQU DID, TYPE A 1 ")
read(5,920) ians
if(ians .ne. 1) stop
c
write(o,910)
910 format("UTHIS PROGLRAM ENABLES YOU TO DUMP ONE OR MORE SEGMENTS"/
" TO YOUR TAPE. YOU CAN EVEN DUMP WHOLE DIRECTORIES. "/
" THE PROGRAM CREATES A FILE NAMEvL °'CONTROL.DUMP'™)
c
920 format(il)
c
call o (Mattach","filel0","vfile_"+»"control.qgump")
call 10 ("open”,"filel10","so0o")
c
c
write(6,945)
945 format("0OYOU MUST TYPE IN ALL THE ABSOLUTE PATH NAMES OF"/
* THE SEGMENTS OR DIRECTORIES YOU WANT TO DUMP TO TAPE."/
"Ox*x*x THESE MUST BE ENTERED IN ALPHABETICAL ORDER !*%x%xxx%x'")
10 write(6,950)
950 format("O NOW TYPE IN THE ASSOLUTE PATH NAME OF"/
" THE NEXT SESMENT OR DIRECTORY YOU WANT TO BACKUP."/
“OTYPE ITS ABSOLUTE PATH NAME :")
read(5,960) path
960 format(ab0)
c
write(6,970)
970 format("OIF YOU WANT TO DUMP MORE PATHS, TYPE 1, OTHERWISE, 0O")
read(5,9220) ians
write(1J,960) path
if(ians .eg. 1) yo to 10
c
c
end

234 GEOINDEX

SUBROUTINE NAME: BACKUP2 Arrays used: None
Called by: backup.ec
Error checking and reporting: None
Awuthor: Harold Johnson Constants: None
Purpose of the program: backup2 allows the user to | Program logic:
dump various files and directories to a tape. 1. Prompt:
Data base: Geoindex TYPE YOUR TAPE NUMBER, FORMAT A6
Computer: Honeywell Series 60 (level 68) 2. The user’s response is read into tape.
Operating system: Multics 3. The program calls dump.ec.
Calling sequence: call backup2 4. The user receives a message that 1 or 2 message files
Arguments: None have been added to her directory and will auto-
Subroutines called: dump.ec matically be dprinted. These should be picked up
Common data referenced: None and saved; any old dump.maps for this tape should
Input files: None be discarded because they are obsolete.
Output files: None 5. Stop.

PROGRAM backup?

PURPOSE: TO ALLOW A USER 7O DUMP VvARIOUS FILES AND DIRECTORIES TO
A TAPE,

PROGRAMMER: H Johnson
DATE: Dec. 29, 1977

OO0 OO0 0000

character tapexo
c
c

write(6.,910)
910 format(“OTYPE YOUR TAPE NUMBER, FORMAT A6"™)
c
c

read(5,940)tape

940 format(aéb)
c
c

call ec ("dump”+,"control.dump”,"hhj",tape)

c
¢ THIS IS THE EXEC COM BEING CALLED:
c &attach

¢ complete_dump &1 32 -debuy

c &3

c &quit

o

50 write(6,980)

980 format("OTHIS ROUTINE ADDS 1 OR 2 MESSAGE FILES TO '/

" YOUR DIRECTORY WHICH ARE AUTOMATICALLY DPRINTED,.,"/

" THEY ARE VERY IMPORTANT AND SHOULD BE PICKED UP AND SAVED"/
" IN A SAFE PLACE. "/

' THEY AKE THE DUMP.iMAP AND POSSIBLE ERROR MESSAGE."/
"OSAVE THEM IN A SAFE PLACE., THROW AWAY ANY OLD DUMP.MAPS"/
" FOR THIS TAPE, SINCE THEY ARE COMPLETELY OBSOLETE."™)

c

c

end

APPENDIX C
3.

PROGRAM NAME: RESTORE

Awuthor: Harold Johnson
Purpose of the program: restore allows the user to
restore files that she has previously dumped to tape
using complete__dump or backup.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: restore
Arguments: None
Subroutines called: retrieve.ec
Common data referenced: None
Input files: User’s backup tape
Output files: control.retrieve used on unit 10 (file10)
Arrays used: None
Called by: None
Error checking and reporting: The user is asked whether
she sent a message to the operator asking her to locate
the tape. If the user responds with other than 1, the
program aborts.
Constants: None
Program logic:
1. file10 is attached and opened for sequential output.
2. Prompt:
DID YOU SEND A MESSAGE TO THE
OPERATOR TO FIND YOUR BACKUP
TAPE? IF YOU DID, TYPE A 1.

restore proyram

PURPOSE:

PROGRAMMER
DATE: Jan 6.

H Johnson
1978

O O 0 006000

character tapexb6, path*60

(]

call

call 1o ("open","filelD","so")
c

write(6,910)

4.

10.
11.

12,

235

The program prints a message describing its pur-
pose.

Prompt:

NOW TYPE THE ABSOLUTE PATH NAME
OF THE NEXT SEGMENT OR DIRECTORY
YOU WANT TO RESTORE WHICH IS ON
YOUR BACKUP TAPE. USE ITS AB-
SOLUTE PATH NAME.

The response is read from the terminal and then
written to file10. You can request as many as 50
absolute path names.

Prompt:

IF YOU WANT TO RESTORE MORE PATHS,
TYPE 1; OTHERWISE 0

If ians is equal to 1, go to step 4.

Close and detach file710.

Prompt:

TYPE THE NUMBER OF YOUR BACKUP
TAPE, FORMAT A6
Read the response into tape.
Call ec (“retrieve”,““control.retrieve” tape).
Message to the user:
THIS ROUTINE AUTOMATICALLY
DPRINTS A ‘RETRIEVE’ MAP WHICH YOU
SHOULD OBTAIN. CHECK THAT THE RE-
QUESTED FILES ARE IN YOUR DIREC-
TORY.

Stop.

To allow a user to restore files which he has
previously dumped to a tape using compete_dump or

backup

io ("attach","filel0","vfile_"s»"control,retrieve")

910 format("ODID YOU SEND A MESSAGE TO THE OPERATOR TO"/

" FIND YOUR BACKUP TAPE? IF YOQU DID»
read(5,920) i1ans

920 format(il)

c
write(5,930)

TYPE A

1)

930 format("OTHIS PROGRAM ENABLES YOU TO RETRIEVE ONE OR MORE"/

" FILES FROM A BACKUP TAPE.,
" OR backup. "/

WHICH WAS PROCESSED USING complete_dump"/

"OYOU MUST KNOW THE COMPLETE PATH NAMES OF SEGMENTS YOU WANT"/

" TO RESTORE.

**%x THESE MUST BE TYPED IN IN ALPHABETICAL ORDER xxx")

236 GEOINDEX

c
10 write(6,940)
940 format("ONOW TYPE THE ABSOLUTE PATH NAME OF THE NEXT"/
" SEGMENT OR DIRECTORY YOU WANT TO RESTORE WHICH IS ON'"/
" YOUR BACKUP TAPE."/
" JUSE ITS ABSOLUTE PATH NAME :™)
read(5,950) path
950 format(a6l)
c .
write(10,950) path
c
write(o,970)
970 format("OIF YOU WANT TO RESTORE MORE PATHS, TYPE 1; OTHERWISE, O")
read(5,920) ians
if(ians .e3g. 1) yo to 10
c
endfile 10
¢ THIS IS A MICKEY MOUSE STATEMENT TO GET A NL CHARACTER ON
¢ THE END OF THE LAST RECORD.
c
call 1o ("close","filel10")
call 10 ("detach","file10")
c
write(6,980)
980 format("OTYPE THE NUMBER OF YOUR BACKUP TAPE, FORMAT A6")
c
read(5,990) tape
990 format(ao)
c
call ec ("retrieve”,"control.retrieve'",tape)

THIS IS THE FOLLOWING EXEC COMMAND:

$attach

retrieve &1 -debuy

&2

no

dprint -dl &l.retrieve.map
dquit

OO0 000 aAa00 000

write(6,9910)
9910 format("UTHIS ROUTINE AUTOMATICALLY OPRINTS A 'RETRIEVE™/
" MAP' WHICH YOU SHOULD OBTAIN. CHECK THAT THE REQUESTED FILES"/
" ARE IN YOUR DIRECTORY.'™)
[

stop
end

EXEC_COM NAME: RETRIEVE.EC Computer: Honeywell Series 60 (level 68)
Author: Harold Johnson Operating system: Multics

» »”

Purpose of the program: retrieve.ec consists of a Multics | Calling sequence: ec (“retrieve”,”control.retrieve”,tape)
command that retrieves the path names given by the | Arguments:
user from the tape specified by the user. control.retrieve— File of path names

Data base: Geoindex tape— Tape number

APPENDIX C 237

Subroutines called: None

Common data referenced: None
Input files: control.retrieve

Output files: control.retrieve.map
Arrays used: None

Called by: restore

Error checking and reporting: None
Constants: None

Program logic:

1. The file is attached.

retrieve.ec

. The Multics command, retrieve, is executed.
. The path names listed on the file control.retrieve are

restored to the user’s directory from the tape.

. The retrieve command asks whether more tapes are

to be reloaded, and the exec_com gives an
automatic NO response.

. The control.retrieve.map is automatically dprinted

and deleted.

. Quit.

&attach
retrieve &1 -uebug
&2
no
dprint -dl &l.retrieve.map
squit
PROGRAM NAME: VERPLOT ferent kinds of commands in both uppercase and

Awuthor: Lawrence Balcerak

Purpose of the program: verplot generates the System
Status Map for the Geoindex system. This program
reads a file of commands and creates a Versatec plot
file using the instructions from that file.

Data base: Geoindex

Computer: Honeywell series 60 (level 68)

Operating system: Multics

Calling sequence: verplot

Arguments: None

Subroutines called: change_origin, change__symbol,
change__width, closef, newpattern, openf, pattern,
pattern_verplot, plotfile, plotiegend, plotoutline,
scaleplot, cf, dprint, io_call, ioa_$nnl, plot, plots,
setup__versaplot

Common data referenced: icom(80), in1

Input files: init_vals used on unit 15 (file15) (initial
value file for the command file)

Output files: temp10 used on unit 10 (file10) (for
messages)

Arrays used: iwhat(16,7)

Called by: None

Error checling and reporting: The program checks for
invalid commands. Any invalid command causes an
error message to be written along with the erroneous
command line.

Constants:
in1 = 15 (input reference number for the command

file)
in2 = 16 (input reference number for any plotting file
used)

Program logic:

1. Set initial values:
iwhat(16,7) (contains the names of the eight dif-

lowercase)

isym = 2 (the number of the default symbol to be
used for plotting single points)

name = “” (blank space)

. The program sends a message to the terminal:

WHAT IS THE NAME OF YOUR COMMAND

FILE??

USE NO MORE THAN SIX CHARACTERS!
Read the character string sent back into the

variable name.

. Call openf to attach and open the command file for

input. Use in1 as the reference number.

Call openf to attach and open temp70 for output.
Use reference number 10.

Call io_call to attach the initial values file to the
name init_vals.

. Call setup_versatec. This links to the Versatec

software.

. Call pattern.

Call pattern__verplot.
These subroutines initialize the arrays for the
13 shading patterns used.

. Call plots to initialize the Versatec routines.

Call plot to position the software origin.

. Place blanks into the input line icom(80).

Read a command line into icom(80).
If EOF, go to step 27.

. Find the semicolon in the input line and set // equal

to this position.
If one is found, go to step 10. All commands must
have a semicolon in the first eight positions.

. The program prints the error message:

THIS LINE CANNOT BE IDENTIFIED AS A
COMMAND.

238

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

GEOINDEX

along with the erroneous line.

Go back to step 7 to read another command.

If Il is equal to 1, 2, 3, or 4, go to step 9, because
there are no commands with a semicolon in these
positions.

Depending on the value of //, go to step 11 (Il = 15),
step 13 (Il = 6), step 17 (I = 7T), or step 23 (/| = 8).

If the command is not PLOT or plot, go to step 9.
This is the only four-letter command.

Call plotfile.

Go to step 7 to read another command line.

If the command is not SCALE or scale, go to step
15. -

Call scaleplot.

Go to step 7 to read another command line.

If the command is not REORG or reorg, go to step
9.

Call change__origin.

Go to step 7 to read another command line.

If the command is not LEGEND or legend, go to
step 19.

Call plotlegend.

Go to step 7 to read another command line.

If the command is not SYMBOL or symbol, go to

step 21.

PROGRAM VERPLOT

common /comand/

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

Call change__symbol.

Go to step 7 to read another command line.

If the command is not LINWID or linwid, go to
step 9.

Call change__width.

Go to step 7 to read another command line.

If the command is not OUTLINE or outline, go to
step 25.

Call plotoutline.

Go to step 7 to read another command line.

If the command is not PATTERN or pattern, go to
step 9.

Call newpattern.

Go to step 7 to read another command line.

The program sends a message to the terminal:

PLOT FINISHED

Call plot (0.,0.,999) (frame finished).

Call plot (0.,0.,-999) (all plotting finished).

Call setup_versaplot (“reset”) (unlinks from the
Versatec software).

Call closef to close and detach from files in7 and
file10.
Call io__call to detach the initial values file.

Dprint the message file with the delete option.

Call cf to close all files.

icom(80)pid(15),isym;in1pin2

character name*o,fmt*16,icom*1,iwhat*1(16,7),init*10,1dx1

external io_call

§ cf

& dprint

(descriptors)

(descriptors)s.,ioa_%nnl
(descriptors),setup_versaplot

data ((iwhat(irsj)sj=1,7),1=1,16)

. &/"S""'C"I.'A"I.'L""'E.'I" ‘0"l
IILII’IOE""'GIO'OIEll"qu'l’IOD"’IO
"O""'U" IITUO"'L" "I'.I"N“I"
.'P""'A'. "T""'T" "EC"'OROO"'
'.S"’.'Y" "’.l"l’llBll |l00' "L"I..
"L""’I" l'NIO"'w" "I" "D"I"
llpl" "L" uon' "T ” " o” ” L1} ”
"R.."'E" "O”I"R..
.'Sl' LI 1) " " ” "

b I)

LU | B

- %

" G 11
" (1] 1] "
.” d ”
” " n ”
r

-
-
-
-

A I]

l'tll

W N N N Y N Y NN

" N N NN

1]

-
-

* -

- ® a

Tt E O~ @

- G M -~ 3

114 I} ” 1

0023 M 0 o

»w O

-
-
-
-
-
-

LI L | B |]

[TV B N])

ch_mn

L I)

"l"
” dOO’"

1" "w _n n "
’

9

" S

-
-
NN Y N 8

Q0 QIR @ X QX X R R

- =
-
A T T B Y

"lﬂ

-
-
-

S N NN
-
-

” "

" " l ” (1]

NN N N N Y NN N N %Y N NN
-

NN N Y Y Y NN

-3 T

" __ s e LI 1 I | B 1)
’

-
-
AR)

< @

e

~»
“»

in1=15
in2=16
isym=¢

name=" "

(descriptors),
(descriptors).,

”

Eﬂ
N”

”

-« ® =
- « =
L N L L N N N T T N N T T T)

-
-

e 114
n ”
"
”

”

"/

APPENDIX C 239

call 1oa_3%nnl ("“/WHAT IS THE NAME OF YOUR COMMAND FILE??")
call i1o0a_%$nnl ("“/USE NO MORE THEN SIX CHARACTERS! ")
read 10, name
10 format (ab)
call openf (int,name,"si ")
call openf (10,"tempi10”,"so ")
call jo_call ("attach","init_vals","vfile_ ","init_vals")
call setup_versaplot
call pattern
call pattern_verplot
call plots(J,0,0)
call plot (2.0,uU.005,-3)

25 do 30 1=1,80
30 dcomCi)=" "
read (inl1,40,end=260) icom
40 format (80al)
do 5J LiL=1,3
it (icom(lLl) .ege. "7") go to 70
50 continue
55 write (10,60) icom
o0 format (™ THIS LINE CANNUOT BE IDENTIFIED AS A COMMAND."./,1x,80a1)
go to 25
70 go to (55,55,55,55,80,100,140,220),1L1

80 do 90 1=1.,4
90 1 f ((icom(i) .ne. iwhat(7,3)) .and.
& (icom(i) .ne. iwhat(15,1))) go to 55
call plotfile
go to 25

190 do 110 1=1,5
110 if ((icom(i) .ne. iwhat(1,1)) .and.
& (icom(i) .ne. iwhat(9,i))) go to 120
call scaleplot
go to 25
120 ago 130 1=1,5
130 if ((icom(i) .ne. 1what(d,1)) .and.

& (icom(i) .ne. iwhat(16,1))) go to 55
call change_origin
go to 25

140 do 150 1=1,6
150 if ((icom(i1) .ne. iwhat(2,1)) .and.
& (icom(i) .ne. iwhat(10,i))) go to 160
call plotlegend
go to 25
160 do 170 1=1,6
170 if ((icom(i) .ne. iwhat(5,3)) .and.

& (icom(i) .ne. iwhat(13,i))) go to 200
call change_symool
go to 25

200 do 210 i=1,6

240 GEOINDEX
210 if ((icom(i) .ne. iwhat(6,i)) .and.
& (icom(i) .ne. iwhat(14,i))) go to 55
call change_width
4o to 295
c
220 do 230 1=1,7
230 if ((icom(i) .ne. iwhat(3,i)) .and.
& (icom(i) .ne. iwhat{(11,i))) go to 240
call plotoutline
yo to 25
240 do 250 i=1,7
250 if (Cicom(i) .ne. iwhat(b4,i)) «anda.
& (icom(i) .ne. iwhat(12,i))) go to 55
call newpattern
go to 25
c
260 call ioca_3nnl (" /PLOT FINISHED™)

call
call
call
call
call
catl
call
call cf
stop

end

ptot (0.,0.,999)
pltot (03.r0.,-999)
setup_versaplot
closef (in1)
closeft (10)
io_catl
dprint ("=dl","temp10"™)
("-alt.')

("-reset")

("agetach”,"init_vals™)

SUBROUTINE NAME: CHANGE__ORIGIN

Author: Lawrence Balcerak

Purpose of the program: change_ origin identifies and
evaluates the x and y distances for a change in the
origin and moves the origin that distance.

Data base: Geoindex

Computer: Honeywell series 60 (level 68)

Operating system: Multics

Calling sequence: call change_origin

Arguments: None

Subroutines called: find_number, plot

Common data referenced: icom(80), id(15)

Input files: None

Output files: temp10 used on unit 10 (file10) (for
messages)

Arrays used: icom(80), id(15)

Called by: verplot

Error checking and reporting: The subroutine checks for
a blank keyword field, an error in a keyword, and an
error in a data value. If any are found, an appropriate
message is written to a file, which is dprinted at the
end of the run.

Constants: None

Program logic:
1. Set initial values. The keywords for x and y are not

necessarily both present. The default values for

=

both are 0. The first position to look for a keyword
(iplace) is 7, because the command takes up 6
spaces. The last nonblank character of the record
is in position ilast, which is initialized to 81 to
start.

Starting at the last position of the record (80), check
in descending order for a nonblank character. If
there is one, go to step 4.

The subroutine prints the error message:

THE FIELD CONTAINS ALL BLANKS
and returns to the calling program.

Find the first nonblank character in this field and
set iplace equal to this position.

If ic = iplace to ilast, then find the end of the next
keyword by looking for a comma.

Set ic equal to one less than the position of the com-
ma or to ilast if none exists. This is the position of
the last character in this field.

If the keyword is x= or X= go to step 11.

If the keyword is y= or Y= go to step 12.

The subroutine prints the error message:

THIS FIELD IS NOT RECOGNIZED AS A
KEYWORD!!
and the string involved.

Set iplace = ic + 2, which is the first possible posi-

tion for the next keyword.

APPENDIX C 241
10. If there are more characters to check (compare the | 17. Place the character string in the array id.
present position, iplace, with the last possible Call find_number to translate the string into the
position, ilast), go to step 4. real number rnum.
Otherwise, go to step 20. If the error return code, istat, equals 0, go to step
11. Set the switch key equal to 1. 19.
Go to step 13. 18. The subroutine prints the error message:
12. Set the switch key equal to 2. THIS STRING HAS AN UNRECOGNIZABLE
13. Add 2 to iplace. This is the first possible position for CHARACTER
the data string. and the string involved. Then it returns to the call-
14. Check for a nonexistent data string. If data string is ing program.
nonexistent, go back to step 9. 19. Depending upon the value of key, set xx (key = 1) or
15. Find the first nonblank character in this data string, yy (key = 2) equal to rnum.
and if found go to step 16. Go back to step 10 to check for more data.
If the whole string is blank, set rnum = 0, and go to | 20. Call plot to change the origin.
step 19. 21. The subroutine prints the message:
16. Set num equal to the number of characters in the THE ORIGIN HAS BEEN MOVED BY X = nnn
string. Y = nnn
If num is greater than 15, go to step 18. Return
subroutine change_origin
c
common /comand/ icom(80),id(15),isyms,inl,in2
character icom*x1,id*1
c
xx=0.,
yy=0.
iplace=7
ilast=81
c
c FIND THE LAST NON-BLANK CHARACTER OF THE RECORD
do 10 i=iplace,30
ilast=ilast-1
10 if (icom(ilast) .ne. " ") go to 30
write (10,20) icom
20 format (" THE FILELD CONTAINS ALL BLANKS",/,1x,80a1)
go to 240
c FIND THE FIRST NON-BLANK CHARACTER IN THIS FIELD
30 do 40 m=iplacerilast
40 if (icom(m) .ne. " ") go to S0
m=ilast
S0 iplace=m
c FIND THE LAST POSITION FOR THIS FIELD
do 60 ic=iplacerilast
60 if (icom(ic) .egq. ",") 3o to 70
ic=ilast
go to 80
70 ic=ic-)
c IDENTIFY THE KEYWORD
80 if (icom(iplace+1) .ne. "=") go to 90
if (Cicom(iplace) .eg. "X") L.or.
& (icom(iplace) .eg. "x")) go to 110
if ({(icom(iplace) .eq. "Y™) «Or.
& (icom(iplace) .eg. "y")) go to 120
90 write (10,700) (icom(idsi=iplacesric)
100 format (" THIS FIELD IS NOT RECOGNIZED AS A KEYWORD!!",/,1x,74a1)

242 GEOINDEX
c FIND THE FIRST POSTION IN THE NEXT FIELD
105 diplace=ic+?
if (ilast-iplace) 220,220,30
110 «key=1
go to 130
120 key=2
130 iplace=iplace+?
if (ic-iplace) 105,135,135
c FIND THE FIRST NON-BLANK CHARACTER FOR THIS DATA FIELD
135 do 140 num=iplacesic
140 1f (icom(num) .ne. " ") go to 150
rnum=0,
go to 190
150 iplace=num
num=ic-iplace+1
if (num .gt. 15) go to 165
(=0
do 160 i=iplaceric
L=L#1
160 id(l)=icom(i)
call find_number (idsnumsrnumsistat)
if (istat .eq. U) go to 190
165 write (10,170) (icom(id,i=iplacesric)
170 format (" THIS STRING HAS AN UNRECOGNIZABLE CHARACTER",/,1x,74a1)
go to 240
c
190 go to (200,210),key
200 xx=rnum
Jgo to 105
210 yy=rnum
go to 105
c
220 call plot (xxeyy,=3)
write (10,230) xx,yy
230 format (" THE ORIGIN HAS BEEN MOVED BY X=",f10.3,/,30x,"Y=",f10.3)
240 return
end

SUBROUTINE NAME: CHANGE_WIDTH

Author: Lawrence Balcerak

Purpose of the program: change_width evaluates the
data string given and changes the line dot width to
that value.

Data base: Geoindex

Computer: Honeywell series 60 (level 68)

Operating system: Multics

Calling sequence: call change_ width

Arguments: None

Subroutines called: find_number, newpen

Common data referenced: icom(80), id(15)

Input files: None

Output files: temp10 used on unit 10 (file10) (for
messages)

Arrays used: icom(80), id(15)
Called by: verplot
Error checking and reporting: The subroutine checks for
a blank data field and an error in a data value. If either
are found, an appropriate message is written to a file,
which is dprinted at the end of the run.
Constants: None
Program logic:
1. Starting at the last position of the record (80), check
in descending order for a nonblank character. If
there is one, go to step 3.
2. Subroutine prints the error message:
THE FIELD CONTAINS ALL BLANKS!
and goes to step 7.
3. Find m, the first nonblank character in the field.
4. Set inum equal to the number of characters in the
string. If inum is greater than 15, go to step 6.

APPEND

Place the character string in the array id.
Call find_number to translate the string into the
real number rnum.
If the error return code, istat, equals 0, go to step 8.
. Subroutine prints the error message:
THIS STRING HAS AN UNRECOGNIZABLE
CHARACTER!
Subroutine prints the message:
THE DEFAULT VALUE WILL BE USED!!

subroutine change_width

common /comand/ icom(80),id(15)
character icom*1,idx1

FIND THE LAST
do 10 j=8,5)
num=383-)
if (icom(numn)
write (10,20)
format (" THE
4o to 75

FIND THE FIRST
do 40 m=8,num
if (icom(m) .ne.
m=num
itnum=num-m+1
if (inum .gt.
=0
do 60
l=L+1
id()=1com(i)
call find_number
1f (istat .eq. 0)
write (10,70)
format ("
write (10,80)
format (" THE DEFAULT VALUE wWILL
rnum=1,
ivissrnum+0.5
call newpen (ivis)
write (10,1UJ) ivis
format ("
return
end

NON-BLANK CHARACTE

(o}

10 .ne. ” ")
icom

FIELD CONTAINS AL

go to
20

NON-BLANK CHARACT
30
40

"w o on)

go to 50

50

15) go to 75

i=m,num

60

(idesinumernum,
go to 90

70

75

30

94

100

THE LINE WIDTH HAS CHANGED TO

IX C 243

Set rnum = 1, which is the default line width.
8. Change the real number rnum to the integer ivis.
9. Call newpen to change the line width to ivis.
10. Subroutine prints the message:
THE LINE WIDTH HAS BEEN CHANGED
TO »n DOTS WIDE

Return

sisymesinl,ing

R ON THE RECUJURD

30
L BLANKS! ",/+1x,80a1)

ER IN THE DATA FIELD

istat)

(icom(id)s,i=8snum)
THIS STRING HAS AN UNRECOGNIZABLE CHARACTERYI!",/,1x,73a1)

BE USED!!™)

'»i12+" dots wide")

SUBROUTINE NAME: CHANGE_SYMBOL

Awuthor: Lawrence Balcerak

Purpose of the program: change__symbol evaluates the
data string given and changes the number of the sym-
bol (used in plotting all single points) to that value.

Data base: Geoindex

Computer: Honeywell series 60 (level 68)

Operating system: Multics

Calling sequence: call change__symbol

Arguments: None

Subroutines called: find_number

Common data referenced: icom(80), id(15), isym

Input files: None

Output files: temp10 used on unit 10 (file10) (for
messages)

244

Arrays used: icom(80), id(15)

Called by: verplot

Error checking and reporting: The subroutine checks for

a blank data field and an error in the data value. If
either are found, an appropriate message is written to
a file, which is dprinted at the end of the run.

Constants: None

Program logic:

1. Starting at the last position of the record (80), check
in descending order for a nonblank character. If
there is one, go to step 3.

2. Subroutine prints the error message:

THE FIELD CONTAINS ALL BLANKS!
and goes to step 7.

3. Find m, the first nonblank character in this field.

4. Set inum equal to the number of characters in the
string. If inum is greater than 15, go to step 18.

subroutine chanye_symbol

icom(30),1d(1
icom*1,1dx1

common /comand/
character

O O

uo 1J j=3d.,08U
num=338-j

if (icom(num)
write (10.,20)
format ("
yo to 75
FIND THE FIRST NUN-BLANK CHARA
do 40 m=8s,num
1f (icom(m) .ne.
m=num
inum=num-m+1
if (Ginum .ygte.
L=0
do o0
L=+
id(l)=icom(i)
call find_number
if (istat .eq. J)
write (10.,70)
format ("
write (10,80)
format ("
rnum=¢2.
isym=rnum+0.5
if (Cisym lt.
write (10,10UV)
format ("
return
end

icom

20

30
40

" e)

go to

15) go to 75

i=msnum
60

go to 94U

70
75
30
90
J) .0r.
isym

(isym

1900

THE FIELD CONTAINS ALL BLANKS!

THE SYMBOL NUMS3ER HAS BEEN CHANGED TO

GEOINDEX

5. Place the character string in the array /d.
Call find_number to translate the string into a real
number rnum.
If the error return code, istat, equals 0, go to step 8.

. Subroutine prints the error message:
THIS STRING HAS AN UNRECOGNIZABLE
CHARACTER!

. Subroutine prints the message:
THE DEFAULT VALUE WILL BE USED!!
Set rnum = 2, which is the number of the default
symbol.

. Change the real number rnum to the integer isym.
. Subroutine prints the message:
THE SYMBOL NUMBER HAS BEEN

CHANGED TO nn
Return

S)sisymsinl,in?

FIND THE LAST NON-BLANK CHARACTER OF THE RECORD

go to 30

",/s1x,80a31)
CTER InN THE DATA FIELD

50

(idsinumernumsistat)

(icom(i)s,i=8s,num)
THIS STRING HAS AN UNRECOGNIZABLE CHARACTER'!",/,1x,73a1)

THE DEFAULT VALUE wILL BE USED!!'!"™)

«gte. 127)) isym=2.

",ib)

APPENDIX C

SUBROUTINE NAME: SCALEPLOT

Awuthor: Lawrence Balcerak

Purpose of the program: scalepiot evaluates the data
string given and changes the scale to that value.

Data base: Geoindex

Computer: Honeywell series 60 (level 68)

Operating system: Multics

Calling sequence: call scaleplot

Arguments: None

Subroutines called: find_number, factor

Common data referenced: icom(80), id(15)

Input files: None

Output files: temp10 used on unit 10 (file10) (for
messages)

Arrays used: icom(80), id(15)

Called by: verplot

Error checking and reporting: The subroutine checks for
a blank data field and an error in the data value. If
either are found, an appropriate message is written to
a file, which is dprinted at the end of the run.

Constants: None

subroutine scaleplot

common /comand/
character icom*x1,id*1

(2]

do 10 j=7.,80
num=37-j

10 if (icom(num)
write (10,20)

20 format (" THE
go to 75

C FIND THE FIRST

3 do 43 m=7,nunm

40 1f (icom(m) .ne.
m=num

50 inum=num-m+1
if (inum .gt.
=0
do 60
L=L+1

60 1d()=1com(i)
call find_number
if (istat .eg. UJ)
write (10,70)

70 format ("

75 write (10.,80)

30 format("
scale=1,

.ne, " ")

icom

" ")

15) go to 75

iSme.num

go to 9U

FIELD CONTAINS ALL BLANKS!

245

Program logic:

1. Starting at the last position of the record (80), check
in descending order for a nonblank character. If
there is one, go to step 3.

2. Subroutine prints the error message:

THE FIELD CONTAINS ALL BLANKS!
and goes to step 7.

3. Find m, the first nonblank character in the field.

4. Set inum equal to the number of characters in the
string. If inum is greater than 15, go to step 6.

5. Place the character string in the array id.

Call find_number to translate the string into the
real number scale.
If the error return code, istat, equals 0, go to step 8.

6. Subroutine prints the error message:

THIS STRING HAS AN UNRECOGNIZABLE
CHARACTER!!
7. Subroutine prints the message:
THE DEFAULT VALUE WILL BE USED!!
Set scale = 1.
8. Call factor to change the scale to the new value.
9. Subroutine prints the message:
SCALE CHANGED TO nnn
Return

icom(80)»,id(15),isymsinlt,ing

FIND THE LAST NON-BLANK CHARACTER OF THE RECORD

go to 30U

",/ +1x,80a1)

NON-BLANK CHARACTER IN THE DATA FIELD

go to 50

(ideinumesscaleristat)

(icom(i)esi=7+snum)
THIS STRING HAS AN UNRECOGNIZABLE CHARACTER!!",/s1x0s74al)

THE DEFAULT VALUE WILL BE USED!!™)

246

90 call factor (scale)
write (10,100) scale
format (
return
end

GEOINDEX

" SCALE CHANGED TO ",f10.3)

SUBROUTINE NAME: PATTERN_VERPLOT

Author: Lawrence Balcerak

Purpose of the program: pattern_verplot initializes
some of the shading pattern arrays used in verplot.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: pattern_verplot

Arguments: None

Subroutines called: None

subroutine pattern_verplot

common /userpat/ ipl1i

ripl2

Common data referenced: None

Input files: None

Output files: None

Arrays used: None

Called by: verplot

Error checking and reporting: None

Constants: None

Program logic:

1. The first three arrays are set to values whose bit pat-
terns form the patterns needed. All other arrays
are set to 0. These are used for the extra patterns
that are defined by the user.

rip13C€4) ,ipt14(16),ip15(16),

& ip16€16),ip17€16),ip18C16),ip19(16),1p20C16)

do 10 1i=1,4
ipl13(i)=0
10 continue

do 20 1=1,16
ip14¢i)=0
ip15(id)=0
ip16(i)=0
ip17¢i)=0
ip18¢i)=0
ip19¢i1)=0
ip20C¢i)=0
20 continue

ip11= 4%x164%3 +2x16%%6 +16%%4 +8%16
C

ip12= ip11 +ip11/16
C

ip13(1)=

T*x10*%8 +171x16%%x6 +13%x16%x%x4 +14%16%%x2 +

& 15%x(16%x%x7 +16%xx5 +16**3 +16 +1)

1pl13(2)=ip12
ip13(3)=ip13(2)
ip13(4)=ip13(2)

return
end

APPENDIX C

SUBROUTINE NAME: INTERPRET_DATA

Author: Lawrence Balcerak
Purpose of the program: interpret_data interprets
numeric data strings on a record and returns the total
number of data values on the record and the numeric
value of each.
Data base: Geoindex
Computer: Honeywell series 60 (level 68)
Operating system: Multics
Calling sequence: call interpret_data (kind,
numback,realval)
Arguments:
kind— Indicates type of data to be read on the cards
numback— Number passed back to the calling pro-
gram
realva/— The real value of the number
Subroutines called: find_number, find__octal__number
Common data referenced: icom(80), id(15)
Input files: None
Output files: None
Arrays used: realval(20)
Called by: newpattern
E'rror checking and reporting: The subroutine checks for
blank data fields, empty data fields, data fields too
long, and errors in a data field. If such data fields are
found, the number for that field is set to 0 and the pro-
gram continues.
Constants: None
Program logic:
1. Set initial values.
key = 1 (branching flag to show type of data); 1
indicates a real or integer value that is the

default.
numback = 0 (the number of values returned to
calling program).

iplace = 1 (position to start processing).
ilast = 81 (the last nonblank position of the
record).
2. If the data is in octal, kind = “O”, set key = 2.

subroutine interpret_data
common /comandg/
character i1com*x1,id*1,kind#*1
dimension realval (20)

o

C DEFAULT VALUE=1
key=1
numback=0
iplace=1

3.

10.
11.

12.

13.

14.

16.

16.

17.

247

Starting at the last position of the record (80), check
in descending order for a nonblank character. If
there is one, go to step 5.

Set realval(1) = 0.

Return to calling program.

Find the first nonblank character in this field.

Set iplace equal to this position.

Find the last position for this field. It will be just
before the next comma or, if no commas are left,
just before the last character, ilast.

. Check for the possibility of two commas in succes-

sion, and if not found, go to step 8. Otherwise, go
to step 15.

. Set num equal to the number of characters in this

field.

. If num is greater than 15, go to step 15. This is an

error and the default value will be used.

Place the character string in the array id.

If this is a real or integer number (key = 1), go to
step 12.

If this is an octal number (key = 2), go to step 13.

Call find_number to translate the character string
into the real number rnum.

Go to step 14.

Call find_octal_number to translate the character
string into the integer knum.

Change the integer knum into the real number
rmum.

If the error return code, istat, is equal to 0, go to
step 16. A nonzero value indicates some kind of
error in translation.

Set rnum = 0, which is the default value when an
€rror occurs.

Add 1 to numback, the number of data fields
translated and also the index for the array
realval. Store the number rnum in realval.

Set iplace = ic + 2, which is the next place past the
comma (if there was one). If there is another data
field, go to step 5 to continue.

Return.

(kindsnumbacksrealval)

icom(380),id(15),isyms,in1,1in2

KIND INDICATES THE TYPE OF DATA TO B8t READ ON THE CARDS
~EITHER INTEGER OR REAL

248

ilast=81

if (kina .eq. "0") key=2

FIND THE LAST NON-BLANK CHARACTER
do 1J i=1iplace,3C
ilast=ilast-1
if (icom(ilast)
realval (1)=0.

return

10 .ne, ") go t

FIND THE FIRST
do 30 m=iplacesilast
if Cicom(m) .ne. " ")
m=ilast
ipltace=m

20
30

490

FIND THE LAST POSITION FOR THIS
do 50 ic=iplaceritast
if Cicom(ic) .eg. "o")
ic=ilast
go to 70
ic=ic-1
if (ic-iplace)

50

64U
70 1406,90,90
90 num=ic-iplace+l
if (num .gt. 15)
L=0

do 100
L=L+1
id(W)=icom(i)

go to (110,120),key

call find_number (idenums,rnum,i
go to 130

call find_octal _number
rnum=knum
if (istat
rnun=0.
numpback=numback +1
realval (numback)=rnum
iplace=ic+?

if (itast-iplace)
return

end

go to 140
i=iplaceric

100
120 (idsnum,
130

140
150

.23. U) go to 150

16U,160.,20
160

GEOINDEX

OF THE RECORD

o 20

NON-BLANK CHARACTER IN THIS FIELD

go to 40

FIELD

go to 60

stat)

knumesistat)

SUBROUTINE NAME: NEWPATTERN

Author: Lawrence Balcerak

Purpose of the program: newpattern reads and inter-
prets data values representing some shading pattern,
which is then stored in an array and which can be ac-
cessed by the program at a later time.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call newpattern

Arguments: None

Subroutines called: find_number, interpret_data

Common data referenced: icom(80), id(15), in1; some en-
tries in /pat/ and /userpat/, depending on the shading
patterns used

Input files: Command statements used on unit 15
(file15)

Output files: temp10 used on unit 10 (file10) (for
messages)

APPENDIX C

Arrays used: keyword(10,7), new(112), newval(16),
realval(20)

Called by: verplot

E'rror checking and reporting: The subroutine checks for
a blank data field, an invalid keyword, data value
error, invalid reference number, wrong number of
words, missing keyword, too many data values, and
not enough data values. If any such errors are found,
an appropriate error message is printed with,
sometimes, the character string involved.

Constants: None

Program logic:

1. Set new(7) equivalent to ip74(7). This causes the
array new to overlay some entries of the common
block /userpat/ and thereby enables the program
to access these entries by just changing the index
for the array.

2. Set initial values. keyword(10,7) contains the dif-
ferent keywords possible. There are five
keywords, and each is in both uppercase and
lowercase.

Set ir = 0. This is the flag for processing of the
reference number keyword.

Set in = 0. This is the flag for processing of the
number of data points keyword.

Set it = 0. This is the flag for processing of the type
of data keyword.

Set key = 0. This is the branching switch.

Set iplace = 9. This is the first position that a
keyword can start.
Set ilast = 81. This is the position of the last

nonblank character of the record.

3. Starting at the last position of the record (80), check
in descending order for a nonblank character. If
there is one, go to step 5.

4. Subroutine prints the error message:
THE FIELD CONTAINS ALL BLANKS
and returns to the calling program.
5. Find the first nonblank character in this field and
set iplace equal to this position.
6. For jc = iplace to ilast, find the end of the next
keyword by looking for a comma.

Set ic equal to one less than the position of the com-
ma or to ilast if no comma is found. This is the
position of the last character in this field.

7. Search the field for the character “=". If one is
found, go to step 10.
Any keyword must have this ¢haracter.
8. Subroutine prints the error message:
PATTERN: THIS FIELD IS NOT RECOG-
NIZED AS A KEYWORD
along with the erroneous field.
9. Setiplace = ic + 2, which is one position past the
comma.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

249

If there are more characters to examine, go to step
5. Otherwise, go to step 33.

Set Il equal to the count of characters including the
= of the keyword.

If /I is greater than 8, go to step 8. No keyword
has more than 8 characters.

If I/ is equal to 1, 2, 3, 4, or 6, go to step 8. There is
no such keyword.

If /1 is equal to 5, go to step 12.

If // is equal to 7, go to step 19.

If Il is equal to 8, go to step 21.

To reach this step, the keyword contains 5
characters including the =.

If the characters are not TYPE or type, there is an
error, so go to step 8.

Add 5 to iplace, one character past the =.

Check for a comma immediately following the = or
for no more characters in the string.

If either condition is found, go to step 9 to examine
the next field.

Check for a blank data field. If found, go to step 9 to
look at the next field. Otherwise, set ip/ace equal
to the first nonblank character and to go to next
step.

If the characters are not INTEGER or integer, go to
step 17.

Set it = 1 (flag for type keyword processed).

Set kind = “i”. This indicates integer data when
calling interpret_data later.

Go to step 9 to examine the next data field.

If the characters are not OCTAL or octal, go to
step 8. This is an error message of some sort.

Set it = 1. This is the flag for type keyword process-
ed.

Set kind = “O” (indicates octal data).

Go to step 9 to examine the next field.

If the characters are not REFNUM or refnum, go to
step 8. This is an error of some kind.

Set key = 1. This is the branching switch used later
to indicate the reference number.

Add 7 to iplace (one postion past the =).

Go to step 23 to interpret the number.

If the characters are not NUMWORD or numword,
go to step 8. This is an error of some sort.

Set key = 2, which is the branching switch used
later to indicate the number of data points.

Add 8 to iplace, which is one position past the =.

Check for a comma immediately following the =
character or for no more characters in the string.
If either condition is true, go to step 9 to examine
the next field.

Check for a blank data field. If found, go to step 9 to
examine the next data field. Otherwise, set ip/lace
equal to the first nonblank character and go to
next step.

250
25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

GEOINDEX

Set num equal to the number of characters in the
field. If num is greater than 15, go to step 27. The
field is too large.

Place the characters in the array id.

Call find_numbers to evaluate the data. The
returned value is in rnum.

If the error return code, istat, equals 0, go to step
28. A nonzero value indicates an error of some
type when interpreting.

Subroutine prints the error message:

PATTERN: THIS STRING HAS AN UNREC-
OGNIZABLE CHARACTER
along with the erroneous field.

Go to step 9 to examine the next field.

Depending on the value of key, go to step 29, key =
1, or step 31, key = 2.

Set numref = rnum.

Set ir = 1. The flag indicates that the reference
number has been processed. If the reference
number, numref, is equal to 14 through 20, go to
step 9 to examine the next field.

The reference number is invalid. The subroutine
prints the error message:

PATTERN: THE REFERENCE NUMBER
MUST BE FROM 14 to 20
and returns to the calling program.

Set numword = rnum.

Set in = 1. The flag indicates the number of data
words that have been processed.

If numword is equal to 1, 2, 4, 8, or 16, go to step 9
to examine the next field. These values are all
even divisors of 16.

The subroutine prints the error message:
PATTERN: THE NUMBER OF WORDS
MUST BE 1,2,4,8 or 16

and returns to the calling program. Note: At this
point all keywords have been evaluated.

If all keywords have been processed, go to step 35.

Subroutine prints the error message:

THIS PATTERN WILL NOT BE PROC-

subroutine newpattern

common /comand/
common /pat/

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

ESSED THERE IS SOME KEYWORD MISS-
ING!!
~and returns to the calling program. |

Set iplace = 1, which is the index for newval
(always indicates the next value).

Read a data record into icom. If EOF, go to step 41.

Call interpret_data to evaluate all data fields on
the new record.

If the number of values already processed plus the
number just received from interpret_data is less
than or equal to the total number of data values
required, numword, go to to step 39.

The subroutine prints the error message:
PATTERN: THERE ARE TOO MANY DATA
VALUES!

and returns to the calling program.

Place the returned values into the array newval us-
ing iplace as an index counter. Add numback to
iplace. It is now equal to the total number of data
values interpreted.

If there are more data values to be interpreted, go
to step 36 to read another record. If there are too
many data values, go to step 38. If the number of
values interpreted equals numword, to to step 42.

Subroutine prints the error message:
PATTERN: EOF REACHED WHEN TRYING
TO READ ANOTHER RECORD!!

Place the new data values stored in newval into the
common block by placing them into new(ip/ace),
where iplace now takes on values based on the
reference number, numref. There must be 16
values placed into new.

If numword is less than 16, repeat the sequence of
values until 16 values have been exchanged.

Subroutine prints the message:
NEW PATTERN ASSIGNED TO
REFERENCE NUMBER #nn

Return.

icom(80),1d(15),isym,inl,in2
1p1016),1p2C16) ,ip3(4)

rip&(4) , ip5(16).,

& 1p6Q16),ip7(16),ip8(16),ip9(16),ip10(16)

common /userpdat/ ip11?

l'ip12

#ip13C€4) ,ipl4(16),1p15(16),

& ip16(16),ip17¢16),ip18C16),ip19(16),ip20(16)

character

icom*1,id*1,keyword*1(10,7),kind*1

dimension new(112),newval (16),realval (20)

equivalence (new(1),ip14(1))

data ((keyword(is,3),331,7),1=1,10)
TR LVEN LR NN LY,
& l'N'l’liuﬂ"llfﬂﬂ'l'w!U'IIOH’IIR”' "D"’

10

30
40

54

o0

70

3U
EAY
95
100

APPENDIX C
& .'T"I‘.Y.‘I"P"I'.E"I" "’l' “'Ul
& "1"I'.N..I.'T"I‘.E..I"G”I"E”I
& “O"’"C“I“T“I“A”I“L“I" "'l'
& "r"’tlell’"f.t’ltnlt’llul""mil’l'
& "n'.l'.U.'I"m.'l'.w.'l"o"l'.r“l“d“
& "t“'”y""'p"’..e""' IU'U' 'l’it
& l'ill"lnll"'tll'lle""lgll"lel"llr"
& '.O"I.'c.'lﬂt""'anl“l"I" ll’l'
ir=9
in=0
it=0
key=9
iplace=9
ilast=81

“R"

NN N % N NN

-
-
~

251

FIND THE LAST NON-BLANK CHARACTER OF THE RECORD

do 1J i=iplacer,80
tlast=ilast-1
if (icom(ilast)
write (1U0,20)
format ("
return

" ")

«Ne.,
icom

go to 30

THE FIELD CONTAINS ALL BLANKS",/,1x,8Ua1)

FIND THE FIRST NUN-BLANK CHARACTER IN THIS FIELD

ao 4 m=1iplacerilast

if (icom(m) .ne. " ") go to 50
m=ilast

iplace=m
FIND THE LAST POSITION FOR THIS FIELD
do 60 ic=iplacerilast

if (icom(ic) .eqg. "¢") go to 70
ic=ilast

go to 80

ic=ic-1

IDENTIFY THE KEYWURD

do 90 Lll=1placeric

if (icom(Ll) .eg. "=") 4o to 120

write (10,100)

format (" PATTERN:
& /,1x,73a1)

iplace=ic+2

(icom(i),i=iplaceric)

if (ilast-iplace) 340,3640,30
tl=tl-iplace+]
if (LU .gt. 8) go to 95

go to (95,95,95,95,130,95,200,220),1L1L

FIND THE TYPE OF DATA
do 140 1i1=1,4
if ((icom(iplace+i=1)
& (icom(iplace+1-1)
iplace=iplace+5
if (ic-iplace)

keyword(3,1))
keyword(8,1)))

.ne.
«NEe,

110,145,145

THIS FIELD IS NOT RECOGNIZED AS A KEYWORD",

.and.
go to 95

252 GEOINDEX

145 do 150 k=iplacesic
150 1if (icom(k) .ne. " ") go to 160U
go to 110
160 iplace=k
do 170 i=1,7
170 if ((icom(iplace+i-1) .ne, keyword(4,i1)) .and,
& (icom(iplace+i=-1) .ne. keyword(9,i))) gjo to 180
it=1
kind="i"
go to 110

130 do 19J i=1,5
190 1f ((icom(iplace+i=-1) ,.ne. keyword(5,i)) .and,

& (icom(iplace+i=1) .ne, keyword(10,1))) go to 95
it=1
kind="0o"
go to 110
c
c FIND THE REFERENCE NUMBER FOR THE NEwW PATTERWN

200 do 210 i1=1,6
210 it ((icom(iplace+i-1) ,ne. keyword(1,i)) .and.
g (icom(iplace+i=1) .ne. keyword(6,i))) go to 95
key=1
iplace=iplace+?
go to 2490

FIND THE NUMBER UF DATA POINTS
220 do 230 i=1.,7
230 if ((icom(iplace+i=-1) .ne., keyword(2,1)) eand,
& (icom(iplace+i=1) .ne. keyword(7,i))) go to 95
key=2
iplace=iplace+8

240 1t (ic~-iplace) 110,250,250
250 do 2060 k=iplaceric
260 if Cicom(k) .ne. " ") go to 270
go to 110
270 iplace=k
num=ic-iplace+]
if (num .gt. 15) go to 290
L=0
do 280 i=iplaceric
=L+
230 id(l)=icom(1)
call find_number (idsenum,rnums,istat)
if (istat .eqg. 0) go to 310
270 write (10,300) (icom(id,i=iplacesric)
300 format (" PATTERN: THIS STRING HAS AN UNRECOGNIZABLE CHARACTER".,
& /,1x0s73a1)
yo to 110

310 go to (320,330),key

320 numref=rnum+d.5
ir=1
if (Cnumref .ge. 14) .and. (numref .le. 20)) go to 110
write (1U,325)

325

330

APPENDIX C 253

format (" PATTERN: THE REFERENCE NUMBER MUST BE FROM 14 TO 20™)

return

numword=rnum+3J.5

in=1

if ({(numword .eqg. 1) .or. (numword .eqg. 2) .0r. (numword .eg. &)
& «0r. (numword .eq. 8) .or. (numword .eg. 16)) 3o to 110

write (10,5395)

335 format (" PATTERN: THE NUMBER OF WORDS MUST BE 1,2,4.,8 OR 16™)
return
c
c
340 if ((ir .ege. 1) .and. (in .ey. 1) .and. (it .eq. 1)) go to 360
write (1U,350)
350 format (" THIS PATTERN WwILL NOT BE PROCESSED"./,
&" THERE IS SOME KEYWORD MISSING!'!'!'™)
return
C
30U iplace=1
370 read (in1,380send=420) icom
3830 format (30a1)
call interpret_data (kindesnumbacksrealval)
if ((iplace+tnumback=-1) .le. numword) go to 400
335 write (10,390)
39y format (" PATTERN: THERE ARt TOO MANY DATA VALUES!!'™)
return
c
400 do 410 1=1snumpback
410 newval(iplaceti-1)=realval (i)+0.5
iplace=iplace+numback
if(iplace-1-numword) 370,440,385
c
420 write (10,430)
4350 format (" PATTERN: EOF REACHED WHEN TRYING TO READ ANOTHER
RECORD!!"™)
stop
449 k=16/numword
iplace=(numref-14)*16+1
do 40U 1=1,kx
do 450 3=1,numword
new(iplacel)snewval ()
450 iplace=iplace+t
LoU continue
write (10,470) numref
4790 format (" NEW PATTERN ASSIGNED TO REFERENCE NUMBER'",i3)
return
end
SUBROUTINE NAME: PLOTOUTLINE Computer: Honeywell Series 60 (level 68)

Author: Lawrence Balcerak
Purpose of the program: plotoutline reads and evaluates

Operating system: Multics
Calling sequence: call plotoutline

keywords describing how a list of data points im- | Arguments: None
mediately following should be plotted. It will then read | Subroutines called: find_number, interpret_data,
and interpret the data points and plot them. plot, set_shade, tone

Data base: Geoindex Common data referenced: icom(80), id(15), in1

254

Input files: Command statements used on unit 15

(file15)

Output files: temp10 used on unit 10 (file10) (for
messages)

Arrays used: keyword(6,6), jshade(16), xx(20), yy(20)

Called by: verplot

Error checking and reporting: The subroutine checks for

a blank data field, an invalid keyword, data value er-

ror, too many data values, end of file, and missing

keyword. If any such errors are found, an appropriate
error message is printed with, sometimes, the
character string involved.

Constants: None

Program logic:

1. Set initial values. keyword(6,6) contains the dif-
ferent keywords possible. There are three
keywords, each in both uppercase and lowercase.

Set noline = 0, which is the flag for the noline
option.

Set numpoint = 0, which is the number of points
in the outline being plotted. It will be evaluated
later.

Set numref = 0, which is the reference number of
the pattern for the shading option.

Set key = 0, which is the branching switch.

Set kind = “r”, which indicates real number. It is
used when calling interpret data.

Set iplace = 9, which is the first position of record
that keywords can start.

Set ilast = 81, which is the position of the last
nonblank character of the record.

Set the arrays xx and yy = 0.

2. Starting at the last position of the record (80),
check in descending order for a nonblank
character. If there is one, go to step 4.

3. Subroutine prints the error message:

THE FIELD CONTAINS ALL BLANKS
and returns to the calling program.

4. Find the first nonblank position in this field and set
iplace equal to this position.

5. For ic = iplace to ilast, find the end of the next
keyword by searching for a comma.

Set ic equal to one less than the position of the
comma or to ilast if no comma is found. This is the
position of the last character in this field.

6. If the characters are not NPOINT or npoint, go to
step 8.

7. Add 7 to iplace, the character position past the =.

Set key = 1. This is the branching switch used
later to indicate the number of points in the
outline. Go to step 14 to interpret the data value.

8. If the characters are not SHADE or shade, go to
step 10.

9. Add 6 to iplace, which is the character position
past the =.

GEOINDEX

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Set key = 2. This is the branching switch used
later to indicate the reference number of shading.
Go to step 14 to interpret the data value.

If the characters are not NOLINE or noline, go to
step 12.

Set noline = 1. This is the flag to indicate that the
outline is not to be plotted. Go to step 13.

Subroutine prints the error message:

OUTLINE: THIS FIELD IS NOT RECOG-
NIZED AS A KEYWORD!
and prints the erroneous field.

Add 2 to iplace. This is the position where the next
keyword could start. If there are more characters
to check, go to step 4.

If the comma immediately follows the =, go to step
13.

Find the first nonblank character in this data field.

If there is one, set num equal to this position and
go to step 16.

If only blanks are in the data field, then set rnum
= 0, and go to step 20.

Set iplace = num, which is the position of the first
nonblank character in this data field.

Find num, which is the number of characters in the
data field. If num is greater than 15, go to step 19.
The field is too long.

Place the character string in the array /d.

Call find_number to find rnum, which is the
numerical equivalent of the string.

If the error return code, istat, is equal to 0, go to
step 20. A nonzero value indicates an error of
some kind in translation.

Subroutine prints the error message:

OUTLINE: THIS STRING HAS AN UNREC-
OGNIZABLE CHARACTER
along with the erroneous data field.

Go to step 13 to examine the next data field, if any.

On the basis of the value of key, go to step 21 (key =
1) or go to step 22 (key = 2).

Set numpoint = rnum. This is the number of data
points.

Go to step 13 to examine the next data field (if any).

Set numref = rnum. This is the reference number
for the new pattern.

Go to step 13 to examine the next data field (if any).

If numpoint is greater than 0, go to step 25. A zero
value indicates that the npoint keyword was not
present.

Subroutine prints the error message:

OUTLINE: THE NUMBER OF POINTS WAS
NOT GIVEN! THE OUTLINE WILL NOT BE
PLOTTED

and returns to the calling program.

Set iplace = 1, which is index for realval. It always
indicates the next value to use.

26.

27.

28.

29.

30.

31.

(2]

APPENDIX C

Read a data record into icom. If EOF, go to step 31.

Call interpret_data to evaluate all data fields on
the new record.

If the number of values already processed plus the
number just received from interpret_data is less
than or equal to the total number of data values
required, numpoint, go to step 29.

Subroutine prints the error message:

OUTLINE: THERE ARE TOO MANY DATA
VALUES!
and returns to the calling program.

Place the returned values into the arrays xx and yy
using iplace as an index counter.

If there are more data values to be interpreted, go
to step 26 to read another record. If there are too
many data values to be interpreted, go to step 28.
If the number of values interpreted equals num-
point, go to step 32.

Subroutine prints the error message:

OUTLINE: EOF REACHED WHEN TRYING
TO READ ANOTHER DATA RECORD!!

subroutine plotoutline
common /comand/
character

32.

33.

34.

35.

36.

37.

38.

255

along with a list of the arrays xx and yy.

Return to the calling program.

If noline is equal to 1, go to step 35. The outline is
not to be plotted.

Call plot to move with pen up to the first coordi-
nate.

Call plot to move with pen down from point to point
through the coordinate arrays.

Subroutine prints the message:

OUTLINE PLOTTED

If numref is equal to 0, go to step 38. A zero value
signifies no shading is to be done.

Call set_shade to place the 16 words that corres-
pond to the shading pattern identified by the
reference number, numref, into the array jshade.

Call tone to set the shading pattern to that con-
tained in jshade.

Call tone to shade the outline.

Subroutine prints the message:

OUTLINE SHADED

Return

icom(80),1d(15),isym,inl1,in2
icom*1,id*1,keyword*1(6,6),kind*1

dimension j)shade(16),xx(20),yy(20),realval (20)

data ((keyword(i,)),)=1,6),i=

1,6)

&/"N“I"P.'I“O"I"I"I"N"’"T"I

& '.S"I“H“I"A"I“D"I"E'.I" ll’
& '.N'.'.'O'.".L.."'I""'N"’..E"'
& ’OnOI’llp“'l'OUO’OI.il."'nll'lltOI’
& Nsl.’l'h’l"tal"l' "’llel"ll 0"
& "n"I"O"t"l"l"i"l"ﬂ"l"@"/
noline=0
numpoint=0
numref=0
key=0
kind="r"
iplace=9
ilast=81
do S5 i1=1,20
xx(1)=0.,
5 yy(i)=0.
FIND THE LAST NON-BLANK CHARACTER ON THE RECORD
do 10 i=iplace,3U
ilast=ilast~-1
10 3f (icom(ilast) .ne. " ") go to 30
write (10,20) icom
20 format (" THE FIELD CONTAINS ALL BLANKS",/,1x,80a1)
return
FIND THE FIRST NON-BLANK CHARACTER IN THIS FIELD
30 do 40 m=iplacesilast

256 GEOINDEX

40 if (icom(m) .ne. " ") go to 50
m=1ilast
S0 iplace=m

[+ FIND THE LAST NON-BLANK CHARACTER IN THIS FIELD
do 60 ic=iplacesilast
60 if (icom(ic) .eg. ",") go to 70
ic=ilast
go to 80
70 ic=ic-1

c IDENTIFY THE KEYWORD
80 do 90 1i=1.,6
90 if ((i1com(iplace+i-1) .ne. keyword(1,i)) «and.
& (icom(iplace+i-1) .ne. keyword(4,i))) go to 100
iplace=iplace+?
key=1
go to 170

100 do 110 i=1.5

110 if ((icom(iplace+i=1) .ne, keyword(2.,1)) .and.

5 (icom(iplace+i-1) .ne. keyword(5,i))) 4o to 120
iplace=ziplace+6
key=2
go to 170

120 do 130 i=1,6
130 if (Cicom(iplace+i-1) .ne. keyword(3,i)) .and.
\] (icom(iplace+i=1) .ne. keyword(6,i))) go to 140
noline=1
go to 160

140 write (10,150) (icom(ids,i=siplaceric)

150 format (" OUTLINE: THIS FIELD IS NOT RECOGNIZED AS A KEYWORD!",
& /+,1x0,7331%1)

160 iplace=ic+2
if (ilast=-iplace) 260,260,30

c FIND THE FIRST POSITION FOR THIS DATA FIELD
170 if (ic-iplace) 160,180,180
180 do 190 num=iplaceric
190 if (icom(num) .ne. " ") go to 195
rnum=0.
go to 230

195 iplace=num
num=ic-iplace+1
if (num .gt. 15) go to 210
L=0
do 200 i=iplacesic
L=L+1
200 i1d(l)=icom(i)
call find_number (idesnum,rnumes,istat)
if (istat .eg. 0) go to 230
210 write (10,220) (icom(i),i=iplaceric)

220

230
240

250

260

270

2380
285
290

330
310

320

330

349
350

360

370

375
380

385
390

APPENDIX C 257

format (" OUTLINE: THIS STRING HAS AN UNRECOGNIZABLE CHARACTER".,
& /,1x,73a1)
go to 160

go to (240,250) rkey
numpoint=rnum+0.5
go to 160
numref=rnum+0.5

go to 160

if (numpoint .gt. U) go to 2380

write (10,270)

format (" OQUTLINE: THE NUMBER OF POINTS IS NOT GIVEN!",/.,
" THE OUTLINE WILL NOT BE PLOTTED.™)

return

iplace=1

read (in1,290,end=340) icom

format (80al)

call interpret_data (kindenumbacksrealval)

if ((numback+iplace=1) .le. (2*numpoint)) go to 320
write (10,310)

format (" OUTLINE: THERE ARE TOO MANY DATA VALUES!!™)
return

do 330 1=1,numback.?
xx(iplace)=realval (i)
yy(iplace)=reatval(i+1)
iplace=siplace+1
if (iplace-1-numpoint) 285,360,300
write (10,350) (xx(i)oyy(i)ori=1,20)
format (' OUTLINE: EOF REACHED WHEN TRYING TO READ",/,
8" ANOTHER DATA RECORD!!",/,20(2f10.3))

return

if (noline .eq. 1) go to 380
call plot (xx(1),yy(1),3)

do 370 i=1,numpoint

call plot (xx(id,yy(i),2)
write (10,375)

format (" OUTLINE PLOTTED"™)
1f (numref .eq. U) go to 390
call set_shade (numref,jshade)
call tone (U.,0.,jshade,-16)
call tone (xxosyyrsnumpoint,1)
write (1U0,3385)

format (" OUTLINE SHADED")
return

end

258
SUBROUTINE NAME: FIND_OCTAL_NUMBER

Awuthor: Larry Balcerak
Purpose of the program: find_octal_number finds the
numeric value of a string of ASCII characters that
represent an octal number.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call find _octal number (id,num,-
knum,istat)
Arguments:
id—The array of characters to be changed to a number
num —The number of characters to be changed
knum —The integer number that is returned
istat—The error return code (0 = no error; 1 = some
kind of error in translation.)
Subroutines called: None
Common data referenced: None
Input files: None
Output files: None
Arrays used:
id(15)—Contains the characters to be used
karacter(8)—Contains all possible legitimate octal
characters
Called by: interpret_data
Error checking and reporting: Checks for too many
characters and invalid characters. Any error causes
the error return code to be set to 1 and a return to the
calling program.
Constants: None
Program logic:
1. Set inital values:
isign = 0 (flag for negation).
istat = 0 (the error return code).
knum = 0 (the returned integer number).

GEOINDEX

2. If num is greater than 12, go to step 3. If num is
equal to 12, go to step 4. If num is less than 12, go
to step 6.

3. There is an error —either an invalid character or too
many characters.

Set istat = 1 (indicates an error). Return to the call-
ing program.

4, If the octal character is not equal to 4, 5, 6, or 7, go
to step 6.

5. Set isign = 1. An octal character value of 4 or more
indicates a negative value because it has a 1 in the
leftmost bit.

Do steps 6 through 10 for each character in turn (j =
1,num).

6. Setk = num —j (the exponent for the octal number
that represents the number times 8 raised to the
kth power).

7. Search the array karacter for a match. No match in-
dicates an error; go to step 3. If there is a match, ¢
is one more than the value of the character being
examined.

If isign is greater than 0, go to step 10.

. Add the numeric value represented to knum.

Go back to step 6 to examine the next character (if
any).

10. This is a negative number and is stored in two'’s
complement. The two’s complement of an octal
number 7 is (7 —x). Add the complementary value
to knum. Go back to step 6 to examine the next
character (if any).

11. If isign is equal to 0, go to step 13.

12. This must be a negative number. Add 1 to knum
(two’s complement).

Change the sign of knum.

13. Return

© 00

subroutine find_octal_number (igdsnumsknums,istat)

character

data (karacter(i1),1=1,8)

id*1(15),karacter*1(8)

& /"0"’"1""'2""O3l0’"4'l’"5'l’"6"’"7"I

isign=0
istat=0
knum=03
if (num=-12) 30,200,110
T0O
10 istat=1
return

[g]

MANY CHARACTERS FOR AN OCTAL NUMBER

APPENDIX C 259
c TWELVE CHARACTERS, CHECK FOR NEGITIVE NUMBER
20 if ((id(1) .ne. "4") .and. (id(1) .ne. "S5") .and. (id(1) .ne., "6")
& e«and. (id(1) .ne. "7") > go to 30
isign=1
30 do 70 j=1,num
K=num=)
do 40 1=1,38
40 if (i1d()) .eq. karacter(il)) gygo to 50
c UNKNOWN CHARACTER
go to 10
50 if (isiygn .yt. 0) go to 60
knum=knum+(i-1) *xE*xk
go to 70
60 knum=knum+(8-i)*xBx%xk
70 continue
if (isign .eg. J) go to 80
knum=knum+1
knum==knum
80 return
end

SUBROUTINE NAME: FIND_NUMBER

Awuthor: Lawrence Balcerak
Purpose of the program: find_number finds the
numeric value of a string of ASCII characters
representing either a real or integer value.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call find_number (id,num,rnum,istat)
Arguments:
id—The array of characters to be changed to a
number, each element containing one character
num~-The number of characters to be changed; max-
imum number of characters, 15
rnum —~The real number that is returned
istat—The error return code: 0 = no error; 1 = some
kind of error in translation
Subroutines called: None
Common data referenced: None
Input files: None
Output files: None
Arrays used: None
Called by: change_origin, change_symbol,
change__width, interpret_data, newpattern, plot-
file, plotiegend, plotoutline, scale
Error checking and reporting: The subroutine checks for
invalid characters, too many signs (+ or —), and too
many decimal points. Any error causes the error

return code to be set to 1 and a return to the calling
program.

Constants: None

Program logic:

1. Set intital values:
rnum = 0 (the returned real number).
nsign = 0 (the number of sign characters).
isign = 0 (flag for negation).
idot = 0 (the number of decimal points).
istat = 0 (the error return code).
ifactor = 0 (the number of decimal places in the

final value).

Do steps 2 through 9 for ¢« = 1, num. These steps
identify the character and set appropriate flags,
counters, and values.

2. Search through jascii for a character match. If
there is a match, set key equal to the index
number and go to step 3. Otherwise, this is an in-
valid character; go to step 15.

3. If key is greater than 10, go to step 5. This
separates the numeric characters from the others.

4. Subtract 1 from key. key now has the value of the

character.

Multiply rnum by 10 and add key. This gives the

value of one more digit to rnum).

Go to step 2 to examine the next character (if any).

5. Subtract 10 from key.

Go to step 4, 6, 7, or 8, depending on the value of

key.

260

6. Set isign = 1, which is the flag for negative value.

7. Add 1 to nsign, the number of signs found. If nsign
is greater than 1, go to step 15. Otherwise, go
back to step 2 to examine the next character, if
any.

8. Add 1 to idot, the number of decimal points found.
If idot is greater than 1, go to step 15.

9. Set ifactor = num - i, which is the place for the
decimal point in the final value. Go back to step 2
to look at the next character, if any.

GEOINDEX

10.
11.
12.
13.
14.
15.

16.

If ifactor equals 0, go to step 12. The decimal point
does not have to be moved.

Move the decimal point in rnum to the left by ifac-
tor places.

If isign equals 0, go to step 14. Check for negation.

Change the sign of rnum.

Return to the calling program.

Set istat = 1, which indicates some kind of error in
translating the data string.

Return.

subroutine find_number(idsnumsrnumsistat)

character

id*1(15),jascii*x1(14)

data (jascii(id,i=1,14) /"0","1","2","3","6","5","6",

&“7"’0'8"’"9"’ll ll"l_

rnum=0.

nsign=0

isign=0

idot=0

istat=0

ifactor=0
c IDENTIFY THE CHARACTER
ao 100 1=1,num
do 30 key=1,14
if (id(i) .eq.
go to 130

30 jasciilkey))

40
45

if (key .gt. 10)
key=key=-1
rnum=rnum*10.+key
go to 100
key=key-10

go to (45,60,70,80),key
isign=1
nsign=nsign+]1
1if (nsign .ge.
go to 100
idot=idot+1

if (idot .ge.
ifactor=num=-i
continue

go to 50

60
70
2) go to 130
30

2) go to 130

1if (ifactor .eq. 0)
rnum=rnum/ (10.**x3factor)

if (isign .eq. 0) go to 120
rnums-rnum

return

C ERROR FLAG

istat=1

return

end

go to 110

ll’ll+""0.'l/

go to 40

APPENDIX C

SUBROUTINE NAME: SET_SHADE

Author: Lawrence Balcerak
Purpose of the program.: Given the reference number of
a shading pattern, set_shade will return an array
that will produce that pattern.
Data base: Geoindex
Computer: Honeywell series 60 (level 68)
Operating system: Multics
Calling sequence: call set _shade (numref,jshade)
Arguments:
numref-The reference number being processed
jshade(16)—The 16-word array containing values
whose bit arrangement forms some pattern.
Subroutines called: None
Common data referenced: Some entry in /pat/ or /user-
pat/ depending on the value of numref
Input files: None
Output files: None
Arrays used: new(118), kold(136)
Called by: set _shade
Error checking and reporting: A check is made for
numref to range from 1 to 20. Any value outside this
range gives the default value of 1 for numref.
Constants: None
Program logic:
1. new(7) is set equivalent to ip77, and kold(7) is set
equivalent to ip/(7).
This causes one array to overlay each entry in a
common block and thereby enables the program to
access the whole block by just changing the index
for the array.
2. If numref is outside the range 1-20, set numref = 1,
which is the default value.
3. If numref is greater than 10, go to step 8. If numref

4.

10.

11.

12.

261

has a value from 5 to 10, go to step 6. If numref
has a value of 3 or 4, go to step 5.

To get here, numref must be equal to 1 or 2.
Compute the index for iplace. Set numword =
16, which is the number of words in the sequence
that completes one pattern. Go to step 7.

. The reference number must be 3 or 4 to reach this

step.
Compute iplace. Set numword = 4. Go to step 7.

. The reference number must be 5 through 10 to reach

this step.
Compute iplace. Set numword = 16.

. Fill jshade with the pattern. If the pattern does not

take 16 words, repeat the pattern until all 16
words are given a value. The correct pattern is
found in kol/d by using the index ip/ace as a star-
ting point and reading numword words. Return to
calling program.

. If numref has a value from 14 to 20, go to step 11. If

numref equals 13, go to step 10.

. The reference number must be 11 or 12 to reach this

step.

Compute iplace. Set numword = 1. Go to step 12.

The reference number must be 13 to reach this step.

Set iplace = 3. Set numword = 4. Go to step 12.

The reference number must be 14 through 20 to
reach this step.

Compute iplace. Set numword = 16.

Fill jshade with the pattern. If the pattern does not
take 16 words, repeat the pattern until all 16
words are given a value. The correct pattern is
found in new by using the index ip/ace as a start-
ing point and reading numword words.

Return to the calling program.

subroutine set_shade (numref,jshade)

common /pat/

ip1€16),ip2(16) ,ip3(4)

e1pb(bd) L,ip5(16).,

& ip6(16),ip7(16),1p8C16),ip?(16),ip10C€16)

common /userpat/ ip11 sipl12

2ip13(4) ,ip14(16),ip15(16),

& 1p16016),ip17(16),ip18(16),ip19C16),ip20(16)
dimension jshade(16).,new(118),kold(136)
eguivalence (new(1),ip11),(kold(1),ipl(1))

c
1if ¢ (numref .lt. 1) .or. (numref
it (numref .3t. 10) go to 60
if (numref .ge. 5) go to 20
if (numref .ge. 3) go to 10

c THE REFERENCE NUMBER IS 1 OR 2.
iplace=(numref-1)*16+1
numword=1e6
go to 3U

C THE REFEREWNCE NUMBER IS 3 OR 4,

10 iplace=(numref-3)*4+33

egte 20)) numref=1

262

numword=4
go to 30

GEOINDEX

c THE REFERENCE NUMBER IS 5 THRU 10.

20 iplace=(numref-5)*16+41
numword=16

30 k=16/numword
L=0
do 54
do 40
l=L+1
jshade(l)=kold(iplace)

40 iplace=iplace+!
iplace=iplace-numword

50 continue
return

1i=1sk
j=1l,numword

14)
13)

60 if (numref
if (numref
C THE REFERENCE
iplace=(numref-11)+1
numword=1
go to 90
C THE REFERENCE NUMBER IS 13.
70 iplace=3
numword=4
go to 90
c THE REFERENCE
80 dplace=(numref-14)*x16+7
numword=16

«Je.
.eq.

go to 380
go to 70

70 kx=1o/numword
L=0

co 110
do 100
L=1+1
jshade(l)=new(iplace)
iplace=iplace+1
iplace=iplace-numword
continue

return

end

i=1,k
J=1snumword

100

119

NUMBER IS 11 OR 12,

NUMBER IS 14 THRYU 20.

SUBROUTINE NAME: PLOTLEGEND

Awuthor: Lawrence Balcerak

Puyrpose of the program: plotlegend reads a character
string and plots the string using parameters given by
the keywords of the command.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call plotlegend

Arguments: None

Subroutines called: find_number, letter, newpen

Common dato referenced: icom(80), id(15), in1

Input files: Command statements used on unit 15
(file15)

Output files: temp10 used on unit 10 (file10) (for
messages)

Arrays used: keyword(8,6), itext(60)

Called by: verplot

APPENDIX C 263

E'rror checking and reporting: The subroutine checks for
a blank data field, invalid keywords, data field too
long, data-value error, and missing keyword. If any
such errors are found, an appropriate error message is
printed with, in certain circumstances, the character
string involved.

Constants: None

Program logic:

1. Set initial values. keyword(8,6) contains the four
possible keywords.
Each of the four is in both uppercase and lower-
case.

Set iangle = 0. This is the default angle for plotting
the legend.

Set /width = 1. This is the default line width in dots.

Set ix = 0. This is the flag to indicate that the
x-coordinate has been processed.

Set iy = 0. This is the flag to indicate that the
y-coordinate has been processed.

Set ih = 0. This is the flag to indicate that the
height has been processed.

Set in = 0. This is the flag to indicate that the
number of characters has been processed.

Set key = 0. This is the branching switch.

Set iplace = 8. This is the first position that a
keyword can start.

Set ilast = 81. This is the position of the last
nonblank character of the record.

2. Starting at the last position of the record, 80, check
in descending order for a nonblank character. If
there is one, go to step 4.

3. The subroutine prints the error message:

THE FIELD CONTAINS ALL BLANKS
and returns to the calling program.

4. Find the first nonblank character in this field, and
set iplace equal to this position.

5. For ic = iplace to ilast, find the end of the next
keyword by searching for a comma.

Set ic equal to one less than the position of the
comma or to ilast if no comma is found. This is the
position of the last character in this field.

6. Search the field for the character =.

If one is found, go to step 9. Any keyword must
have this character.

7. Subroutine prints the error message:

LEGEND: THIS FIELD IS NOT RECOG-
NIZED AS A KEYWORD
along with the erroneous field.

8. Set iplace = ic + 2, one position past the comma.

If there are more characters to examine, go to step
4. Otherwise, go to step 35.

9. Set Il equal to the count of characters including the
= of the keyword.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

If /I is greater than 7, go to step 7. No keyword is
greater than 8 characters.

If Il is equal to 1, 3, 4, or 5, go to step 7. If I/ is equal
to 2, go to step 11. If // is equal to 6, go to step 15.
If Il is equal to 7, go to step 19.

If the characters are X or z, go to step 12.

If the characters are Y or y, go to step 13. Other-
wise, go to step 7.

Set key = 1. This is the branching switch for the z
coordinate.

Set ix = 1. This is the flag to indicate processing of
the x coordinate.

Go to step 14.

Set key = 2. This is the branching switch for the y
coordinate.

Set iy = 1. This is the flag to indicate processing of
the y coordinate.

Add 2 to iplace, first position past the = character.

Go to step 23 to find the data value.

If the characters are not equal to NCHAR or nchar,
go to step 17.

Set in = 1. This is the flag to indicate processing of
the number of characters.

Set key = 3. This is the branching switch for
number of characters.

Add 6 to iplace, first position past the = character.

Go to step 23 to find the data value.

If the characters are not equal to ANGLE or angle,
go to step 7.

Set key = 4. This is the branching switch for the
angle.

Add 6 to iplace, first position past the = character.

Go to step 21 to find the data value.

If the characters are not equal to HEIGHT or
height, go to step 21.

Set h = 1. This is the the flag to indicate processing
of the height.

Set key = 5. This is the branching switch for the
height.

Add 7 to iplace, first position past the = character.

Go to step 23 to find the data value.

If the characters are not equal to LWIDTH or
Iwidth, go to step 7.

Set key = 6. This is the branching switch for the
line width.

Add 7 to iplace, first position past the = character.

Check for a comma immediately following the =
character.

If there is one, go to step 8 to check for the next
keyword.

Find the position of the first nonblank character in
the data field.

264

26.

217.

28,

29.

30.

31.

GEOINDEX

If the field is all blank, go to step 8. Otherwise, set
iplace equal to this position.

. Compute num. This is the the number of characters

in this data field.

If num is greater than 15, go to step 27. The field is
too long.

Place the characters in the array id.

Call find_number to evaluate the data. The re-
turned value is in rnum2.

If the error return code, istat, is equal to 0, go to
step 28. A nonzero value indicates an error of
some type when interpreting.

Subroutine prints the error message:

LEGEND: THIS STRING HAS AN UNREC-
OGNIZABLE CHARACTER

Go to step 8 to examine the next keyword, if any.

Depending on the value of key, go to:
step 29 (key = 1); step 30 (key = 2); step 31 (key

= 3); step 32 (key = 4); step 33 (key = b); step
34 (key = 6).

Set xx = rnum (the z coordinate).

Go to step 8.

Set yy = rnum (the y coordinate).

Go to step 8.

Set nchar = rnum (the number of characters in the
legend).

suoroutine plotlegend

common /comandg/
character

dimension itext (20)

data ((keyword(isj)sj=1,6),i=1,3)

&I"N"I"cul"H"I"A“I"R“I“

32.

33.

34.

3b.

36.

37.

38.

39.

40.

41.

8 "A'.l”l'"'l'.G.""L.".' "'ll ll:
& "H"I"E"'.'I"I"G"I"H"I"T"I
& "L"I"wlnl"I"I"D'.I.'T"’.'H"’
& llnll'"cll’thl".a"’llrﬂ". 'Q’
& "atl,lanO,llgtilill!""e!’" "'
& "h"I"e"I"i""'g"”'h"I"t"I
& "l"I"w“I"i"l.'d"I"t"I"h.'/

iangle=0

lwidth=1,

ix=0

iy=dJ

1h=J

in=0

key=0

iplace=38

ilast=481

Go to step 8.

Set iangle = rnum (the angle of the legend).

Go to step 8.

Set height = rnum (the height of a character).

Go to step 8.

Set Iwidth = rnum (the width of a line in dots).

Go to step 8.

Read the next record, which contains the text to be
plotted.

If the four keywords (x coordinate, y coordinate,
height, and number of characters) were proc-
essed, go to step 38.

Subroutine prints the error message:

THIS LEGEND CANNOT BE PLOTTED!
THERE IS SOME KEYWORD MISSING!!

It prints the line of text involved and returns to
the calling program.

Call newpen to set the line width (dots) to the new
value.

Set iscale equal to the number of sixteenths in the
height.

Call letter to plot the character string.

Subroutine prints the message:

LEGEND PLOTTED

Return.

icom(80)»,1d(15)sisymsinl,in?
icom*1,id*x1,keyword*1(8,6)

FIND THE LAST NON-BLANK CHARACTER OF THE RECORD

APPENDIX C 265

do 10 i=iplace,s0
ilast=1last-1
1J if (icom(ilast) .ne. " ") go to 30
write (10,20) icom
20 format (" THE FIELD CONTAINS ALL BLANKS".,/,1x,80a1)
return

c FIND THE FIRST NON-BLANK IN THIS FIELD
30 do 40 wm=iplacerilast
40 if (icom(m) .ne. " ") go to 50
m=1ilast
SO0 iplace=m
C FIND THE LAST POSITION FOR THIS FIELD
do 6J ic=iplacesrilast
60 if (icom(ic) .ege. "0") go to 70
ic=ilast
yo to 80U
70 1c=ic-1
c IDENTIFY THE KEYWORD
30 do 90 Lll=iplacesic
90 if (icom(lLL) .eq. "=") go to 120
95 write (10,100) (icom(id)s,i=iplacesric)
10U format (" LEGEND: THIS FIELD IS NOT RECOGNIZED AS A KEYWORD",
o /elxo,73a1)
110 1iplace=ic+?
key=9]
if (ilast-iplace) 390,390,30

120 Ll=ll-1place+1
if (LL .gt. 7) go to 95
go to (95,130,95,95,95,170,210),1L1
c FIND THE X-VALUE OR THE Y-VALUE
130 if ((icom(iplace) .eq. "X") «0r.
5 (icom(iplace) .eq. "x"™)) go to 140
if ((icom{iplace) .eq. "Y") .or.
& (icom(iplace) .eg. "y")) go to 150
go to 95
140 key=1
ix=1
go to 160
150 key=?
1y=1
100 1iplace=iplace+?
go to 250
c FIND THE ANGLE OR THE NUMUER OF CHARACTERS
170 do 180 i=1,5
180 if ((icom(iplace+i=1) .ne. keyword(1,1i)) .and.
& (icom(iplace+i-1) .ne. keyword(5,i))) go to 19U
in=1
key=3
iplace=iplace+6
go to 250
190 do 200 121,95
230 if ((icom(iplace+i=1) .ne. keyword(2,i)) .and.

266 GEOINDEX

& (icom(iplace+i=1) .ne. keyword(é6,i))) yo to 95
key=4
iplace=iplace+6
go to 25U
c FIND THE HEIGHT OR THE LINE WIDTH

210 do 220 1=1.,6
220 if ((icom(iplace+i-1) .ne. keyword(3,i1)) sand.
& (icom(iplace+i-1) .ne. keyword(7,i))) go to 230
ih=1
key=5
iplace=iplace+7?
go to 250
2350 do 240 i=1,6
2640 if ((icom(iplace+i-1) .ne. keyword(4.,i)) .and.
& (icom(iplace+i=-1) .ne. keyword(8.,i))) go to 95
key=6
iplace=iplacet+7?
250 if (ic-1iplace) 110,260,260
c FINO THE FIRST NON-BLANK CHARACTER FOR THIS DATA FIELD
260 do 270 num=iplaceric
270 if (icom(num) .ne. " ") go to 280
go to 110
230 1iplace=nunm
num=ic-iplace+?
1f(num .gt. 15) go to 300
1=0
do 290 i=iplacesic
{=L+1
290 id(l)=icom(1)
call find_number (ids,numsrnumesistat)
it (istat .eq. U) go to 320
30U write (10,310) (icom(i),i=iplacesric)
310 format (" LEGEND: THIS STRING HAS AN UNRECOGNIZABLE CHARACTER".,
& /+5%x+73a1)
go to 110

320 go to (330,340,350,360,370,338U)skey
330 xx=rnum

go to 110
340 yy=rnum
go to 110
350 ncharsrnum+0.5
go to 110
360 iangle=rnum+0.5
.go to 110
370 height=rnum
yo to 110
380 Llwidth=rnum+0.5
go to 110
C
c

390 read (in1,395,end=450) itext
395 format (20a4)

APPENDIX C

if ((ix .eq. 1
& (in .egq. 1
write (10,400)

)
)) y4o to 430

.and. (iy .eq.

267
.and. (1h .eq. 1) .and.

400 format (" THIS LEGEND CANNOT BE PLOTTED!",/.,
& " THERE IS SOME KEYWORD MISSING!!'™)

write (10,420) itext
420 format (1x.,20a4)
return

430 call newpen (lwidth)
iscalezheight*16+0.5

call Letter (ncharsiscalerianglesxxsyyritext)

write (10,440)
440 format (" LEGEND PLOTTED™)
450 return

end

SUBROUTINE NAME: PLOTFILE

Awuthor: Lawrence Balcerak

Purpose of the program: plotfile reads the name of a file,
opens that file, and plots it.

Data base: Geoindex

Computer: Honeywell 60 (series 68)

Operating system: Multics

Calling sequence: call plotfile

Arguments: None

Subroutines called: closef, find_number, io_call, let-
ter, plot, set_shade, symbol, tone

Common data referenced: icom(80), id(15), isym, int,
in2

Input files:

Command statements used on unit 15 (file15)
File to be plotted used on unit 16 (file 76)

Output files: temp10 used on unit 10 (file10) (for
messages)

Arrays used: keyword(18,9), ipat(20), ne(2),
jwhat(200), xx(2000), yy(2000), kplotfield(8),
jshade(16), kfield(8), chan(8,5), text(5), iwhat (200,2)

Called by: verplot

Error checking and reporting: The subroutine checks for
a blank data field, blank file name, file name too long,
data field too long, invalid data character, invalid
keyword, missing keyword, and end of file reached. If
any such error is found, an appropriate error message
is printed with, in certain circumstances, the
character string involved.

Constants: None

Program logic:

1. Set initial values. keyword(18,9) contains the nine
keywords possible. Each is in both uppercase and
lowercase.

Set name equal to blanks. This will be the name of
the file to be opened for plotting.

Set height = (.14, which is the default height of
each plotted character.

Set space = height divided by 5, which is the
space between lines of character.

Set numpat = 0, which is the number of the pat-
tern to use for shading.

Set noline = 0, which is the flag for the noline
option.

Set noname = 0, which is the flag for the process-
ing of the name keyword.

Set noselect = 0, which is the flag for the select
option.

Set noclear = 0, which is the flag for clearing the
space around characters.

Set noshade = 0, which is the flag for the shade
option.

Set nochar = 0, which is the flag for character
plotting.

Set noselshade = 0, which is the flag for selecting
shades.

Set item = 0, which is the index counter used to
rotate through the different patterns.

Set iplace = 6, which is the first position that a
keyword can be found.

Set ilast = 81, which is the position of the last
nonblank character (initialized to one past the
end of the record).

Set ipat(i) = i for i = 1, 10, which is the default se-
quence of patterns to rotate through.

Set ipat(i) = 0 for i = 11, 20, which indicates that
these patterns are not used in the rotation.

Set kplotfield(i) = 0 for i = 1, 8, to indicate which

268

10.

11.
12.

13.
14.

15.
16.

17.

18.

GEOINDEX

of the eight character fields from the header card
are to be plotted and in what order.

. Starting at the last position of the record (80),

check in descending order for a nonblank
character.
If there is one, go to step 4.

. Subroutine prints the error message:

THE FIELD CONTAINS ALL BLANKS
and returns to the calling program.

. Find the first nonblank character in this field and

set iplace equal to this position.

. For ic = iplace to ilast, find the end of the next

keyword field by searching for a comma.

Set ic equal to one less than the position of the
comma or to ilast if no comma is found. This is
the position of the last character in this field.

If the characters in the keyword are not NAME or
name, go to step 22.

Add 5 to iplace, the first position past the =
character.

Set iplace equal to the first nonblank character in
the data field.

If the field is all blank, set iplace equal to ic, which
is the last character in the field.

. Compute m, the number of characters in the data

field.

Compute k, the number of characters in the record
that lie before this data field.

If m is greater than 0, go to step 11. A zero value
would occur with an all blank field or when a
comma immediately follows the = character.

Subroutine prints the error message:

NAME HAS NO CHARACTERS!!

Go to step 18 to examine the next keyword, if any.

If m is less than or equal to 20, go to step 13.

Subroutine prints the error message:

NAME IS MORE THAN 20 CHARACTERS
LONG!
along with the erroneous field.

Go to step 18 to examine the next keyword, if any.

Backspace the command file.

Compute fmt?, the format to be used in reading
the name of the file. This format must skip
spaces and read m characters from the record in-
to name(k).

Read the file name from the record.

Call io_call to attach and open the file for input.
Use the value of in2 as the file number.

Set noname = 1. This is the flag to indicate that
the file name has been processed.

Set iplace equal to ic + 2, the first position past
the comma. This would be the first possible posi-
tion for the next keyword.

19

20

21.

22,

23.

24.

25,

26.

27.

28.

29.

30.

31.

32,

33.

34.

35.

. If there are more characters in the record to check,
go to step 4 to examine the next keyword.

. If there is not another record containing
keywords, go to step 80 to read the select record,
if any.

Read the next record into icom(80).

If EOF, go to step 128. Set ilast = 81. Set iplace
= 1. Go to step 2 to interpret this record.

If the characters in the keyword are not HEIGHT
or height, go to step 31.

Add 7 to iplace, the first position past the =
character.

If there are not any characters in this data field, go
to step 18 to examine the next keyword, if any.

Find the first nonblank character in this data field
and set /place equal to this position. If the field
is all blank, go to step 18 to examine the next
keyword, if any.

Compute num, which is the number of characters
in the data field.

If num is less than or equal to 15, go to step 28 to
interpret the data.

Subroutine prints the error message:
PLOT-HEIGHT: THIS FIELD HAS TOO
MANY CHARACTERS

along with the erroneous field.

Go to step 18 to examine the next keyword, if any.

Place the string of characters into the array id.

Call find_number to evaluate the data. The
returned value is in rnum.

If the return error code, istat, is not equal to 0, go
to step 18 to examine the next keyword, if any. A
nonzero value indicates an error of some type
when translating.

Set height = rnum.

Set space = height divided by 5. Go to step 18 to
examine the next keyword, if any.

If the characters of the keyword are not PATTERN
or pattern, go to step 51.

Add 8 to iplace, which is the first position past the
= character.

Set kount = 0, the counter for the number of pat-
tern reference number being interpreted.

If the data field has no length, a comma follows the
=, go to next step. Otherwise, go to step 35.

The subroutine prints the error message:
PLOT-PATTERN: THE PATTERN COUNT
HAS AN ERROR!

along with the erroneous field.

Go to step 18 to examine the next keyword, if any.

Find num, the position of the first nonblank
character in this field.

If there is a nonblank character, go to step 38.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

417.

48.

49.

50.

APPENDIX C
51.

If kount = 0, go to step 34. This indicates an all-
blank field for the count of numbers following.

The subroutine prints the error message:

PLOT-PATTERN: THE FIELD CONTAINS
AN ERROR AND WILL BE SET TO THE
DEFAULT VALUE

along with the erroneous field.

Go to step 46.

Set iplace = num, which is the first nonblank posi-
tion of the data field.

Compute the number of characters in the data field
and store in num.

If num is less than or equal to 15, go to step 41.

If kount is equal to 0, go to step 34. This should be
the pattern count.

Go to step 37. There is an error in a pattern
reference number.

Place the character string into the array id.

Call find_number to evaluate the data. The
returned value is in rnum.

If the return error code, istat, = 0, gotostep 43. A
nonzero value indicates an error of some sort
during the interpretation.

If kount = 0, go to step 34. This is the pattern
count that has an error. Otherwise, go to step 37.

If kount is greater than 0, go to step 45.

Set numpat = rnum. This is the count of the pat-
tern reference numbers that follow.

Go to step 46.

Set ipat(kount) = rnum. Store the pattern
reference number just translated.

Add 1 to kount.

If kount is less than or equal to numpat, go to step
48.

Zero out the rest of the jpat array.

Go to step 18 to examine the next keyword, if any.

There are more numbers to translate.

Set iplace = ic + 2, the first position past the
comma (if there was one).

If jlast is less than or equal to ip/ace, go to step 47
because there are no more characters to inter-
pret on this record.

If ilast is greater than ip/ace, there is an error in
the command file because the plot option and
value must be on the same record.

Set ip/ace equal to the first nonblank character of
this data field. There must be at least one.

For ic = iplace to ilast, find the end of this
keyword by searching for a comma.

Set ic equal to one less than the position of the
comma or to jlast, if no comma is found. This is
the position of the last character in this field.

Go to step 35 to interpret the next data field.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.
62.
63.

64.

65.

269

If the characters of the keyword are not TEXT-
FIELD or textfield, go to step 69.

Add 10 to iplace, first position past the =
character.

Set kount = 0, which is the counter for the number
of text fields being interpreted.

If the data field has no length (a comma follows the
=), go to the next step. Otherwise, go to step 55.

Subroutine prints the error message:
PLOT-TEXTFIELD: THE FIELD COUNT
HAS AN ERROR!

along with the erroneous field.

Go to step 18 to examine the next keyword, if any.

Search for the first nonblank character in this data
field, and set num equal to this position. If such a
character is found, go to step 58.

If kount equals 0, go to step 54. This would be an
all-blank data field for the number of text fields
count.

Subroutine prints the error message:
PLOT-TEXTFIELD: THIS FIELD CON-
TAINS AN ERROR AND WILL NOT BE
PLOTTED!!

along with the erroneous field.

Go to step 65 to examine the next number, if any.

Set iplace = num, the first nonblank character in
this field.

Compute num, which is the number of characters
in the data field.

If num is less than or equal to 15, go to step 60.

If kount = 0, go to step 54. Otherwise, go to step
57.

Place the characters in the array id.

Call find_number to evaluate the data. The
returned value is in rnum.

If the error return code, istat = 0, go to step 62. A
nonzero value indicates an error of some type.
If kount = 0, go to step 54. Otherwise, go to step

57.

If kount is greater than 0, go to step 64.

Set numfield = rnum, which is the count of text-
field numbers that follow.

Go to step 65.

Set num = rnum.

Set kplottield(num) = kount. The array kplot-
field contains numbers indicating the order in
which the character fields from the header card
will be plotted. If kplotfield(num) is blank or
zero, there will be no plotting. If value is other
than blank or zero, the text field will be plotted.

Add 1 to kount, which is the next sequence
number.

If kount is less than or equal to numfield, go to

270

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

1.

78.

79.

GEOINDEX
81.

step 67. There are more numbers in this se-
quence to interpret.

Set nchar = 1, which is a flag indicating that the
textfield option is to be used. In other words,
there are character fields to be plotted.

Go to step 18 to examine the next keyword, if any.

Set iplace = ic + 2, the first position past the
comma.

If there are no more characters left in this record,
go to step 66.

Search the remainder of the string for a comma.

Set ic equal to one less than the position of the
comma or to ilast if no comma is found.

Go to step 55 to interpret this data field.

If the characters are not NOLINE or noline, go to
step 71.

Set noline = 1. This is a flag to turn on the noline
option.

Go to step 18 to examine the next keyword, if any.

If the characters are not SELECT or select, go to
step 73.

Set noselect = 1. This is a flag to turn on the
select option.

Go to step 18 to examine the next keyword, if any.

If the characters are not REFCLEAR or refclear,
go to step 75.

Set noclear = 1. This is a flag to indicate the clear-
ing of the area around reference number is to be
done.

Go to step 18 to examine the next keyword, if any.

If the characters are not SHADEALL or shadeall,
go to step 7.

Set noshade = 1. This is a flag to turn on the
shading options for all outlines.

Go to step 18 to examine the next keyword, if any.

If the characters are not SELSHADE or selshade,
go to step 79.

Set noshade = 1.

Set noselshade = 1. These two flags will tell the
program to shade only those outlines that have
pattern reference numbers listed in the selected
outlines.

Go to step 18 to examine the next keyword, if any.

The variable did not match any valid keyword.

The subroutine prints the error message:

PLOT: THIS KEYWORD IS NOT VALID!!
along with the erroneous field.

Go to step 18 to examine the next keyword, if any.

At this point in the program, all keywords have been
read and evaluated. Next, the file of selected outlines
is read and then plotted.

80.

Set kount = 1. This is the counter for the number
of feature numbers read in.

82.

83.

84.

85.

86.

87.

88.

39.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.
100.

Read the next record from the command file as
characters.

If EOF, go to step 128.

If these characters are END PLOT or end plot,
this signifies the end of the information for plot-
ting this file,

Go to step 84.

Add 1 to kount.

Go to step 81 to read another record.

Subtract 1 from kount. The END FILE record is
not to be used.

If noname = 1, go to step 87. A zero value in-
dicates that the name keyword was not present
or had an error in it.

The subroutine prints the error message:

PLOT: NO PLOT FILE???
and returns to the calling program.

Read a header card from the plot file. The eight
fields are read here as a character string. This is
needed for comparison with the select outline
file.

If the EOF reached, go to step 128.

Backspace the plot file.

Read the header card as separate characters. This
is needed later in the program when plotting the
characters.

Backspace the plot file.

Read isfno, the number of pairs of coordinate
points. _

Subtract 1 from isfno. The first position is a text
position.

Read the x text position, the y text position, and
the outline points.

Set isel = 0, which is a flag to indicate if outline is
in select file.

Set key = 0. If the outline is in the select file, key
will take on the value of the pattern reference
number given for that outline.

If kount equals 0, go to step 98. No outlines were
listed in the select outline file.

If this outline is in the file of selected outlines go to
step 97.

Otherwise, go to step 98.

Set ise/ = 1. This is a selected outline.

Set key = jwhalt(i), which takes on the value of the
pattern reference number listed.

If noselect = 1 and isel = 0, go to step 87 to read
the points for another outline. This outline will
not be plotted.

If isfno is greater than 1, go to step 101.

This is a single point that has some character plot-
ted at that point.

101.

102.
103.

104.

105.

106.

107.

108.

109.
110.

111.

112.

113.

APPENDIX C 271
Call symbol to plot the character. mediately after the main outline.
Go to step 118 to plot the text, if any. Set ne(2) = 4. Four points are in the cleared rec-
If noline equals 1, go to step 103. This indicates tangle.

that the outline will not be plotted.

Use the subroutine plot to plot the outline.

If noshade is not equal to 1, go to step 118. A
value of 1 indicates that the outline is to be
shaded.

If noselshade equals 1, and ise/ equals 0 or key
equals 0, go to step 118. A value of 1 for
noselshade indicates that the selective shading
option is in effect, and the shading pattern used
will be in the selective outline file. A value of 0
for isel indicates that this outline is not in the
selective file. A value of 0 for key indicates that a
0 value was in the pattern location for this
outline.

Set ne(1) = isfno; set ne(2) = 0.

This array contains the number of points in an
outline(s) when using the subroutine tone for
shading. If there is more than one outline, the
subroutine will alternate the shading with blank
areas, depending on the overlapping of the
outlines. This will be used to clear areas around
the text if needed.

Set numarea = 1, one area to start with.

If noclear equals 0 or nochar equals 0, go to step
114. Either the clearing option was not used or
no characters are wanted.

Set numvert = 0; set numhorz = 0. These are
counters for the number of characters that will
be plotted both vertically and horizontally. Do
steps 108-111 for i = 1, 8.

If kplottield(i) equals 0, the ith field of the header
card will not be plotted; skip to the next value of
i.

Add 1 to numvert. There is one more line of text.

Set icheck = 5. A maximum of five characters is
in a field.

Check each character in this field. For each leading
blank or zero, subtract 1 from icheck. All
characters following nonzero characters are to
be considered significant, even a blank.

Set numhorz equal to the maximum of icheck and
numhorz. After checking all eight text fields,
numhorz will hold the maximum number of
characters in any line.

If numhorz equals 0, go to step 114. There are no
lines of text to plot.

Set k = isfno + 1. This is the first index position
used to store the outline to be cleared.

Compute the coordinates of the four corners of the
rectangle to be cleared and store in xx and yy im-

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.
127.

128.

129

Set numarea = 2, two outlines.

Add 1 to item. item is used as an index counter to
rotate through all the different patterns used.
If item is greater than numpat, set item = 1. The

total number of patterns used is numpat.

If ipat(item) is less than or equal to 0 or if
ipat(item) is greater than 20, go back to step
114. These would be invalid reference numbers.

Set num = ipat(item). This is the reference
number that comes from the sequence of pat-
terns.

If key has a value that represents a valid reference
number, set num = key. This reference number
takes the place of the default value.

Call set_shade to get the pattern values for this
reference number.

Call tone to set the pattern. Call tone to shade the
outline. It will also clear the text area if wanted.

If nochar equals 0, go back to step 87 to read the
next header card.

Do steps 119-125 for/ = 1, 8.

Search kplotfield(j) for a value equal to i. This will
give the next text field to plot.

If there is a match, go to the next step. Otherwise,
search for the next value of /.

Count the number of leading blanks in the
character string, and set equal to num.

If there are all blanks or the numeric value of the
field is 0, go back to step 119 to search for the
next value of /.

Set n = 5 - num. This is the number of
characters to be plotted. Store the characters to
be plotted in itext.

Set posx = xpos. This is the x coordinate of the
first line of text.

Set iscale equal to the number of sixteens in the
height.

For each character in turn, call letter to plot the
character.

Add the height of a letter and an interletter space
to the x coordinate to locate the next character.

Subtract enough room from the y coordinate to
correctly position the next line of text.

Go to step 87 to read the next header card.

Subroutine prints the error message:

PLOT: END OF FILE REACHED WHEN
TRYING TO READ A DATA RECORD
Go to step 129.
Subroutine prints the message:
FINISHED PLOTTING
. Call closef to close and detach the plot file. Return.

272 GEOINDEX

subroutine plotfile
common /comand/ icom(80),1d(15),isymsinl,ind
character icom*l,id*1,keyword*1(18,9),name*20,fmt1*21,fmt2*21,
& kfield*S5(8)s,namel*o,char*1(8,5),itext*1(S),iwhat*5(200,2)
external 1o_call (descriptors)
dimension ipat(20),ne(2),jwhat(200),xx(2000),yy(2000),
& kplotfield(8),jshade(16) '
gata ((keyword(i1,3),3=1,9),1=1,18)

ﬁ/"N"I"A"I"M"I"E"I" " " "'" 4] [{]

-
-
-
-
-
-

’ ’ ’ ’
& UIHI""E " 'II'. l'G"’"H"’"T" ” ” ’ ” "'.' ."
& .'Pl""A""'Tll"'T'."'E","R" 'l“"" l"'. "’
'6 "T"'"E""'X“"'T""'F"’"I" "E""'L""'D”’
& .'r"'"'0'."'L"".I"'.'N"’.’E'. " ” ". '."' ."
& "S'.”'E ""'L""’E"”'C""'T .. '.". "". ."
& "R"'"E"’"F"I"C"I"L"I"E" "A"".R"" "'
& "S" I'H"".A""'D""IEIU”'A" "L" ”L""' '.’
" (2] " ” " ” ”n | R ” (1) ” ” ” " " ”
& S EM "L LS, HS A" L,"D" L, "E", ’
& "n ” ’ '.d ’ "m ' e " ’ ” n , " ” ’ ” (1) ’ ”n ” ’ ” ” ’
& "h""e' ’ 1 ’ 'g"".h“"'t"". ."" ""' "'
& ..p'.".a "'t"'..t""'e"'"r.".‘n“"' ."" '.’
& "t"l"e"'"X"'"t"’"f”’"i"’"e"'"l"’"d"'
& "n " ’ .'o ” ’ 1] L "' ” 1' ” ’ "n'. , ’.e (1] ’ ” " ’ ” ” ’ ”n 1] ’
& "S","e"’"l"'"e“’"C"["t ""' ""' ""' '.'
{' "r”"'e.""f"".c‘.".l"l"e.""a"""‘"". '.’
& "S""'h""'d""d"’"e""'a"’..t”’"l’."' "’
& "S""'e""ll""'sl""h ’l'a,""d"’ e"'.‘ l'/

—'0

name=
herht=O.1Io
space=height/5.
numpat=10
noline=0
noname=g
noselect=0
noclear=0
noshade=y
nochar=0
noselshaage=0
item=0
1iplace=6
ilast=81
do 10 i=1,10

10 ipat(i)=i
do 20 1=11,20

20 ipat(i)=0
do 30 i=1.8

30 kplotfield(i)=U

FIND THE LAST NON-BLANK CHARACTER ON THE RECORD
35 do 40 i=iplacer,sl
ilast=ilast-1
40 if (icom(ilast) .ne. " ") go to 6U
write (10,50) icom
S50 format ("™ THE FIELD CONTAINS ALL BLANKS",/,1x,80a1)
return

c

o o000

c
c

60
70

30

90

100

110
129

130

135

149

145

150

1560

170

180

190

APPENDIX C

FIND THE FIRST NON-BLANK CHARACTER IN THIS FIELD
do 7J m=iplacerilast
if (icom(m) .ne. " ")

m=ilast
ipltace=m

g0

to 30

FIND THE LAST NON-BLANK CHARACTER IN THIS FIELD
do Y0 ic=iplacerilast

1if (icom(ic) .eqe.

ic=ilast
go to 110
ic=ic-1

IDENTIFY THE KEYWORD

NAME OF PLOT FILE

do 120U i=1,4

1f ((icom(iplace+i=-1)

3 (icom(iplac
iplace=iplace+5

e+i=-1)

do 130 m=iplacesic

if (icom(m) .ne.

m=ic

iplace=m
k=iplace-1
m=ic-k

if (m .gt. U)
write (10,140)

(L]])

go to

ll’ll) go

.nNe,
«NEe.,

30

145

to 100

keyword(1,1)) .and.
keyword(10,1))) go to 200
to 135

format ("NAME HAS NO CHARACTERS!!™)

go to 170
if (m le. 20)
write (10,150)

format (" NAME IS MORE THEN 20 CHARACTERS LONG!!",/,1x,80a1)

go to 170
backspace 1in1

go to

160

(icom(i)sit=Kkem)

fmt2="(1h(s,12+s3hxsasiles1h))"

if o (m Jlte 10)

tmt2="(1h(,12,3hxsar,i1,1h))"

encode (fmtl,fmt2) k,m

read (int,fmt1)
fmt1="(4hfile,i
1f (in Jle. 9)

name
2"

fmt1="(5hfile0,i1)"

encode (namel,fmt1)
call io_call ("attach",namel,"vfile_
call io_call ("open",namel,"si ")

noname=1

in

LOOK AT THE NEXT KEYWORD

iplace=ic+2

if (ilast-iplace)

1f (icom(ilast)
read (in1,19u)
format (30a?l)
ilast=81

«Ne,
icom

"’Cl)

180,180,60

go to 790

»

‘sname)

273

274 GEOINDEX

iplace=1
3o to 35
c
c HEIGHT OF THE CHARACTERS

200 do 21U 1=1.,6

210 if ((icom(iplace+i=-1) .ne., keyword(2.,i)) «and.
b3 (icom(iplace+i=-1) .ne, keyword(11,31)1)) go to 250
iplace=iplace+7?7

c CHECK FOR A VALID DATA WORD
if (ic-iplace) 170,220,220
220 do 230 num=iplacesic
230 if (icom(num) .ne. " ") go to 240
gyo to 170
240 iplace=num
num=ic-iplace+l
if (num ,le. 15) go to 260
write (10,25U) (icom(id)s,i=1iplaceric)
250 format (" PLOT-HEIGHT: THIS FIELD HAS TOO MANY CHARACTERS",
& /+s1x,70a1)

go to 170

260 t=0
do 270 i=iplacesic
l=t+1

270 id(l)=dicom(i)
call find_number (idsnumesernumsistat)
if (istat .ne. U) go to 179
height=rnum
space=height/5,
go to 170

PATTERN SEQUENCE FOR SHADING
230 do 290 i=1.7
290 1f ((icom(iplace+i-1) ,ne, keyword(3,1)) .and,
¥ C(icom{iplace+i~-1) .ne. keyword(12,i))) go to 470
iplace=iplace+8
kount=4
if (ic-iplace) 3U0,320,3520
300 write (1U»,313) (icom(idsi=iplacesic)
310 format (" PLOT-PATTERN: THE PATTERN COUNT HAS AN ERROR'!!"™,
& /,1x,70a1)
yo to 170

320 do 330 num=i1placeric
330 if (icom(num) .ne. " ") go to 350
if (kount .eg. J) go to 300
355 write (100340) (icom(idsi=iplacesric)
340 forimat (" PLOT-PATTERN: THE FIELD CONTAINS AN ERROR AND WILL
& BE SET TO THE DEFAULT VALUE",/,1x,70a1)
gyo to 400
35uU ipldace=num
num=ic-iplace+]
if (num .le. 15) go to 36U

APPENDIX C 275
if (kount .eg. U) .go to 300

go to 335

360 =0
do 370 i=iplacersic
L=1+1

370 dd(l)=icom(1)
call find_number (idsnums,rnum,istat)
if (istat .eq. 0)Y yo to 330
if (kount .eg. 0) go to 300
go to 335
330 if (kount .gt. U) go to 390
numpat=rnum+0.5
go to 400
390 ipat(kount)=rnum+0,5
400 kount=kount+1
if (kount .le. numpat) go to 420
405 do 410 1i=kount,2)
410 ipat(i)=0
gyo to 170

420 iplace=i1c+?
if (ilast .le. iplace) go to 405
do 430 m=iplacesrilast

430 if Cicom(m) .ne. " ") go to 44U
m=ilast

440 iplace=m
do 450 ic=iplacesrilast

450 if (icom(ic) .eg. "o") gyo to 460
ic=ilast
gyo to 320

460 dic=ic-1
go to 320

TEXT FIELDS TO 8e PLOTTED
470 do 480 i=1,9
440 if ((icom(iplace+i-1) .ne. keyword(é4,1)) .and.
2 (icom(iplace+i=1) .ne. keyword(13,i))) go to 670
iplace=iplace+1y
kount=0
if (ic-1place) 490,510,510
490 write (10,500) (icom(idsi=iplaceric)
500 format (" PLOT-TEXTFIELD: THE FIELD COUNT HAS AN ERROR!!")
go to 170

510 do 520 num=iplaceric
520 if (icom(num) .ne. " ") go to 550
if (kount .eq. 0) go to 490
530 write (1U,540) (icom(id,i=iplaceric)
540 format (" PLOT-TEXTFIELD: THIS FIELD CONTAINS AN ERROR AND
& WILL NOT BE PLOTTED!!'!"™)
go to 600
550 iplace=num
num=ic-1place+1

276

560

570

530

590

600

610

620

630

640

654

6oU

67
6390

6v0
700

710
720

GEOINDEX

if (num .le. 15) go to 560

if (xount .eq. U) go to
go to 530

L=0

do 570 i=iplacesic
L=1+1

id()=icom(i)

490

call find_number (idsnumesrnums,istat)

if (istat .eg. J) go to
it (kount .eg. 0) go to
go to 530

it (kount .gt. U) go to
numfield=rnum+0.5

go to 600

num=rnum+0.5
kplotfield(num)=kount
kount=kount+1

if (kount .le. numfield)
nochar=1

go to 170

iplace=ic+2

if (ilast .le. iplace)
do 630 m=1iplacesilast
if (icom{m) .ne. " ") go
m=ilast

iplace=m

do 650 ic=iplacesilast
if (icom(ic) .eg. "»")
ic=ilast

go to 510

ic=i1c-1

Jo to 510

NOLINE OPTION
do 638U 1=1,0

580
499

590

go to 62U

40 to 610

to 640

3o to 660

if ((icom(iplace+i-1) .ne. keyword(5,12)
3 (icom(Ciplace+i=1) .ne. keyword(14,1))

noline=1
go to 170

SELECT OPTION
do 700 1=1,6

if ((icom(iplace+i=1) .ne. keyword(6,i))
& (C(icom(iplace+ti=1) .ne. keyword(15,i)))

noselect=]
yo to 170

CLEAR REFERENCE WNUMBER
do 724 121,48

if (Cicom(Ciplace+i~1) .ne. keyword{(7,1))
& (icom(iplace+i-1) .ne. keyword(16,1)))

.and.
) go to 690

«and.
Jo to 710

sand.
go to 730

730
740

750
760

770
730

790
83U
310

820

830

840
850

855

860

870

APPENDIX C

noclear=1
go to 170

SHADE ALL OPTION
ao 740 1=1,8
1f ((icom(iplace+i-1) .ne. keyword(3,i)) .and.
§ (icom(iplace+i=-1) .ne. keyword(17,1))) go to 750
noshade=1
4o to 170

SHADE SELECTIVELY OPTION
do 763 1i=1,0
1t (Cicom(iplace+i=-1) .ne. keyword(7.,1)) sand.
& (icom(iplace+i=1) .ne. keyword(18,1))) yo to 770
noshade=1
noselshaae=1
go to 170

NO MATCH FOR A KEYWORD
write (10,780) (icom(id)es,i=1iplacesric)
format (" PLOT: THIS KEYWORD IS NOT VALID!'!")
yo to 17C

KEAD SELECT RECORDS AND END PLOT KEYWURD
kount=1
read (in1,8610) (iwhat(kountsid)esei=1,2)s)jwhat(kount)
format (2a5.,15)
if (((iwhat(kount,1) .eq. "END P") .and. (iwhat(kount,2) .eq.

217

"LOT:, ")) _or.((iwhat(kount,1) .eg. "end p") .and. (iwhat(kount.,2)

.eq. "lot; ")) gyo to 820
kount=kount+1
go to 80U

START TO PLOT THE FILE
kount=kount-1
1f (noname .eq. 1) go to 384U
write (10,830)
format (" PLOT: NO PLOT FILE???")
return

READ IN DATA VALUES FOR AN OQUTLINE

read (in2,850,end=1050) (kfield(i),i=1,8)
format (8a5)

oackspace in2

read (in2.,855) ((Char(ilj)lj=115)li=1l8)
format (3(5a1))

backspace 1in2

read (ind,3860) 1sfno

format (15x,135)

isfno=1sfno-~-1

read (in2,57Jd,end=1030) xpossypose(xx(i)eoyy(idsi=slsisfno)
forimat (12f6.3)

278 GEOINDEX

c CHECK FOR A MATCH WITH THE SELECTED FEATURES
isel=0
key=0Q

if (kount .eg. J) go to Y00
dgo 380 1i=1,kount
880 if ((kfield(1) .eg. iwhat(i,1)) .and. (kfield(3) ,eq. iwhat(i,2)))
4 4o to 39U
Jo to 9uu
890 isel=1
key=jwhat (1)

CHECK IF THIS OUTLINE IS TO g8t PLOTTEVD
903 if ((noseltect .eq. 1) .and. (isel .eg. U)) go to 840

C CHECK FOR SINGLE POINT
if (isfno .3t. 1) go to 9u5
call symbol (xx(1),yy(1)sneightsisym,0.,-1)
go to 960

c CHECK FOR THE NOLINE OPTION
9405 if (noline .eg. 1) go to 920
call plot (xx(1),yy(1),3)
do 910 i1i=1,isfno
910 call plot (xx(id,yy(i),2)

CHECK FOR SHADING
920 if (noshade .ne. 1) yo to 960
if ((noselshade .eq. 1) .and.
& ((isel .eq. 0) .or. (key .ege. 0))) go to 960

c

c CHECK FOR CLEARING THE REFERENCE AREA AROUND THE CHARACTERS
ne(l)=isfno
ne(2)=0

numarea=1

if ((noclear .eq. 0) .or. (nochar .eg. 0)) go to 950

numvert=0

numhorz=u

ago 940 1=21,8

if (kplotfield(i) .eq. 0) go to 940

numvert=numvert+1

icheck=5

do 930 j=1,5

if ((cnar(ir,j}) .ne.
930 icheck=icheck=-1
935 if (icheck .gt. numhorz) numhorz=icheck
940 continue

if (numhorz .eg. UJ) 4o to 95U

k=isfno+1

xx(k)=xpos-0.0¢

xx(k+1)=xx(x)

xx(k+2)=xpostnumhorz*xheight+U.02+space

xx (k+3)=xx(k+2)

yy(k)=ypos=0U.udb

" vy _and. (char(i,j) .ne. "3")) go to 935

c
9590

c
Y69

990
1000

1010
1015

1020

1025

1030
1040

c

S

C

E

&

APPENDIX C

yy(kt1)=ypostnumvertx(height+space)-space+(.06
yy(k+2)=yy(k+1)

yy (k+3)=yy (k)

ne(2)=4

numarea=2¢

HADE THE OUTLINE
item=item+]
1f (item .4gt. numpat) item=1

if ((ipat(item) .le. 0) .or. (ipat(item) .g9t. 20))

num=ipat(item)

it ((key .gt. 0) .and. (key .le. 20)) num=key
call set_shade (nums,jshade)

call tone(U.r,0.,jshade,-16)

call tone (xx,yyr,nersnumarea)

HECK FOR CHARACTER PLOTTING

if (nochar .eqg. 0) go to 340

go 1325 11=1,8

do 27U j=1,8

if (kplotfield()) .eg. i) go to 930
go to 1025

num=0

do 99U kx=1,5

if (char(jrk) .ne. " ") go to 1000
num=num+1

if ((num .eqs. 0) .or. (kfield(j) .eg. " o))
n=5-num

if (n .ege. 5) go to 1015

do 1010 m=1,n

itext(m)=char(j,m+num)

POSX=XpPOS

iscalesheight*16+0.5

do 1020 k=1,n

call letter (1,iscale,0,posxsypossitext(k))
posx=posxtheight+space
ypos=ypos-height-space

continue

go to 840

ND OF FILE REACHED
write (13,1040)
format ("PLOT: END OF FILE REACHED

go to 1025

WHEN TRYING TO READ A DATA RECORD™)

go to 1070

¢ ALL FINISHED

1050
1060
1070

write (10,1060) name

format ("FINISHED PLOTTING ",a20)
call closef (in?2)

return

end

go to 950

279

280
SUBROUTINE NAME: PATTERN

Author: Lawrence Balcerak

Purpose of the program: pattern sets the shading pat-
tern variables to user-defined values.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call pattern

Arguments: None

Subroutines called: None

Common data referenced: /pat/

subroutine pattern
common /pat/

GEOINDEX

Input files: None
Output files: None
Arrays used: ip1(16), ip2(16), ip3(4), ip4(4), ip5(16),
ip6(16), ip7(16), ip8(16), ip9(16), ip10(16) (shading
pattern arrays)
Called by: index__versatec, verplot
Error checking and reporting: None
Constants: None
Program logic:
1. Set all elements of the shading pattern arrays to
those integer values that will give the bit patterns
desired.

ip1€16),1p2(16),ip3C(4),ipb(4),ip5(16),ip6(16).,

¢ 1p7C16),1p3(16),1p9(16),ip10(16)

do 10 I=1,64
ip3s(i)=0
ip4(1)=0

10 continue
do 20 1=1,1¢
ip1(i1)=0
ip2(i)=4
ip5(i)=0
ip6(i)=0
ip7Ci)=0
ip8(i)=0
ip9C1)=0
ip10(i)=0

20 continue

ip1(1)=4x16xx4+1
ipl1(5)=16*ip1(1)
ip1(9)=g*16*x%6+2%1 6%
ip1(13)=16*ip1(9)

ip2(4)=ip1(13)
ip2(8)=ipl(9)
ip2(12)=ip1(5)
ip2(16)=ip1 (1)

1p3C1)=4*x16%%4+1

Tph(3)=4*x16+%8+2x16xx6+16%xx4+8x16

1pS(1)=b*16%kx7
1pS(2)=16*%x3+16x%7
ipS(4)=2*x16xkB+Bx1bxxf
ipS5(6)=ipS(¢)
ipS(7)=ip5(C1)
ipS5(9)=16*%3
ipS(10)=4*xTox*3+4%xT16%%2
ipS(12)=8*x16*xx3+2x16x%2
ipS(14)=1ipSC10)
ipS5C15)=ipS(9)

ip6(1)=8*16*%7+4BxT1O6x x5 +4xT1O6xxS+L*xT1on*4+2*16% %3425 16x%24+16+1

APPENDIX C

1p7(4)=16*x%x4+8%16

281

IP7(8) = alOxaBronTOx w7425 165 %6+ T16%%4L+16%*3+48%16

1p7(12)=64%x16%4342*%16%%6
ip?7(16)=1p7(8)

1ip8(1)=ip6(1)
1p8(9)=1p6(1)

1p9(2)=ip5(2)
ip9C4d=ip5(1)
1ip9(6)=ipS(2)

1p9(8)=4x1ox*xB84+2%xT16x*x6+16*%x4L+8%16

1ip?(102X=ip5(10)
1p?(12)=i1p5S(9)
ipY(14)=ip9(10)
1p9(16)=1p9(8)

ip10(2)=1p5S(9)

P10 (4)=T6x*4 4510 **x344%x16%x%x2+48%16

iplu(6d=iptu(2)
iplT0(B8)=4*xTo*x*7+16%%3
ip10(10)=1p5(7?)

1p10(12)=5%16*%B+5416%%x7+2%x16%%0

ip10C14)=ip10C1Q)
ip1d(16)=ip10(8)

return
end

PROGRAM NAME: PIN90

Author: Pearl Porter

Purpose of the program: pin90 plots map indices interac-
tively on the Tektronix terminal. The user has several
options: plotting the entire United States, plotting as
many as 10 individual States, plotting the grid file,
plotting input files from GRASP, and getting an
enlargement of a specific area.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: pin90

Arguments: None

Subroutines called: initt, anmode, erase, movabs,
dwindo, swindo, movea, drawa, hdcopy, finitt (all
Tektronix routines), io (Multics), grid, plocv, enirg,
indiv

Common data referenced: x1, y1, x2, y2

Input files:
stat90 used on unit 14 (file14), file of x, y coordinates
Files from GRASP used on unit 15 (file15), which plot

numbers, symbols, and outlines
Grid file used on unit 16 (file16), which is used to plot
the grid on the map

Output files: None
Arrays used: None
Called by: None
Error checking and reporting: If program requests a
digit (1 or 2) from the user, it will loop until a number
(1 or 2) is typed in by the user.
Constants: None
Program logic:
1. Prompt:
NEED SYMBOL CODES? (ENTER Y FOR
YES)
If no symbol codes are needed, program goes to
step 4.
2. The symbols and their corresponding numbers will
be printed on the screen.
3. Prompt:
TAP 1 AND RETURN KEY WHEN READY
4. The screen will be erased.
5. Prompt:
ENTER SYMBOL NUMBER AND FILE TO
BE PLOTTED:
This refers to the input files from GRASP. As
many as five files and symbols may be entered.
They will be read into file15. Eight is the max-
imum number of characters for a file name.

282

6. In reference to the files just read, the user has three
options.
Prompt:
FOR SYMBOL AND NUMBERS (WITH
PLOTTING), TYPE 1
FOR SYMBOL AND/OR OUTLINE (NO
NUMBERS), TYPE 2
FOR NUMBERS ONLY (NO SYMBOLS OR
PLOTTING), TYPE 3

. Screen is erased.

. Define screen and virtual window.

. The user is prompted by a series of questions at this
time because no communication can take place
between computer and user after the plotting
starts without destroying the screen. See steps
10-14.

10. Prompt:

ENTER TITLE FOR MAP:

11. Prompt:

TO PLOT INDIVIDUAL STATES, ENTER
1-FOR ENTIRE U.S. ENTER 2

12. Prompt:

TO PLOT COUNTIES ENTER 1 FOR SOLID

LINE, 2 FOR DOTTED LINE, ELSE ZERO
13. Prompt:

TO PLOT GRID, ENTER 1

14. Prompt:

IF YOU WANT A HARD COPY UPON COM-
PLETION, TYPE C
15. If the user entered 1 in response to step 11, the pro-
gram calls subroutine indiv. The program then
goes to step 19.
16. If the user did not enter 1 or 2 for step 11, a
message is printed on the screen:
AT THE PRESENT TIME, THE FILE YOU

© 00

chkkkk PIN9O

cPLOT MAP INDICES ON TEKTRONIX**x*x*
c U.S. Geological Survey

c Program name - pin90

c INPUT:

c stat90.pat = filelé

GEOINDEX

WISH DOES NOT EXIST PLEASE ENTER 1
OR 2 FOR SECOND STATEMENT
Program returns to step 10. If 2 was entered, pro-
gram goes to next step.

17. The program writes the title for the map, draws the
borders, and uses stat90, file14, to plot the
States.

18. If 1 was entered in response to step 13, program
calls grid subroutine and returns to next step.

19. If jji = 0, program goes to 20 (iji = number of files
entered in step 5)

If iji is not equal to 0, read first file name into file15
and call subroutine plocv.

Continue this step until the number of files entered
in step 5 iji = number of files read into file15 iji.

20. If C was entered in step 14 or 23, a hard copy will be
made automatically.

21. If nl = 1, go to step 26. If nl does = 1, this indicates
an enlargement or individual plotting has already
been completed or the option to do so has already

occurred.
22. Prompt:
FOR AN ENLARGEMENT OF PART OF

THIS PLOT, TYPE Y

23. Prompt:
FOR A HARD COPY AFTER ENLARGE-

MENT, TYPE C
24. nl = 1 indicates that an enlargement option has
been found.
25. If Y was entered for step 22, call subroutine enirg
and upon return, go to step 19.
26. Detach and close files.

% %k %k %

dimension lead(20),xx(6),yy(6)

dimension jsym(9),isymb(5)
external 1o (descriptors)
character filename*8(5)
common x1l,yl,x2,y2

data jes/"y"/,kop/"c"/,iblk/"

"/

data jsym/35,36,37,38,42,43,45,79,111/

data izero/00/

APPENDIX C 283

c
call initt(960)
c
c
ichar=43
c
c ASSIGN AND OPEN FILES
call io ("attach","filel4","vfile_","stat90.pat","-append")
call io ("open","fileld","si")
c

call anmode

print ,"Need symbol codes? (enter y for yes)

read (0,100)irep
100 format (al)

if (irep .ne. jes)go to 250

do 200 i=1,9

istb = jsym(i)

ile = jsym(i)*2%%27
c The above computation was made to shift the symbol to the leftmo
\cst position.

call anmode

write (0,150) istb,ile

150 format (2x,1i3,3x,al)
200 continue
c Pause in execution so user can look at symbols and corresponding

\c numbers.
print ,"Tap 1 and return key when ready"
read (0,600)iredy

250 call erase
c call movabs(30,725)
c call anmode
c print ,"Enter state id number”
c read(0,300)istate
c300 format (a4)
c
c
c REQUEST INPUT FILE FOR PLOTTING
c
350 continue
kk=0
ijj=0
131=0

call anmode

call movabs (30,725)
400 print ,"Enter symbol number and file to be plotted:
c iji will equal 1 more than the number of files read.

131 = 1ji+1

read(0,450)isym,filename(1ji)
450 format (1i2,a8)

if (isym .eq. izero) go to 500

isymb(iji)=1isym

go to 400

"

500 continue

284 GEOINDEX

call movabs (30,625)
call anmode
c User is given an option as to what he wants on the map.
print ,"For symbol and numbers (with plotting), type 1/
& For symbol and/or outline (no numbers), type 2/
& For numbers only (no symbols or plotting), type 3"
read (0,600) idec
call erase

c
c SET ORGIN ON PLOTTER
c
xl=.5
x2=23.
yl=1.
y2=16.
c Define virtual window
call dwindo(xl,x2,y1l,y2)
c
c Define Screen window
call swindo(0,1023,0,780)
c
550 nl=0
call movabs (30,750)
call anmode
560 print ,"Enter title for map: "
read(0,570)1ead
570 format (20a4)

print ,"To plot individual states enter l--for entire U.S. en
\cter 2"
read(0,600)istat
print ,"To plot counties enter 1 for solid line,/
2 for dotted line, else zero "
read (0,600) icoun
print ,"To plot grid enter 1
read (0,600)igrid
00 format (il)
print ,"If you want a hard copy upon completion, type c
read (0,100) icopy
call erase
c If istat=1, user will choose up to 10 states to be plotted.
if (istat .eq. 1) go to 1300
call movabs(30,760)
call anmode

o We RN e e RN eIl

c Lead contains title for map.
write (0,610)lead

610 format (1x,20a4)

c

if (istat .ne. 2) go to 1400
If istat=2, the entire U.S. will be plotted.

0060606

DRAW BORDER FOR MAP
call movea(xl,yl)

APPENDIX C 285

call drawa(x2,yl)
call drawa(x2,y2)
call drawa(xl,y2)
call drawa(xl,yl)

c
c PLOT DATA FROM FIRST SOURCE.
c
c Read header information.
700 read (l14,750,end=1100)if,ifno,isf,isfno,ifl
750 format (515)
c ISFNO is the number of x-y coordinates.
ie=isfno
if (isfno .ge. 6) ie=6
call anmode
c Read x-y coordinates.
read (14,800) (xx(i),yy(i),i=1l,1ie)
800 format (12f6.3)
c
825 call movea (xx(l),yy(l))

do 850 k=1,1ie
call drawa(xx(k),yy(k))
850 continue
isfno=isfno-6
if (isfno)700,700,900
900 if (isfno-6)950,950,1000
950 ie = isfno
1000 read (14,800,end=1100) (xx(i),yy(i),i=1l,1ie)
do 1050 k=l,ie
call drawa(xx(k),yy(k))
c Draw until isfno(no. of coordinates) has been exhausted.
1050 continue
if (isfno-6)700,700,850

ATTENTION: When we get grid file, change end=1100 to end=1075
1075 4if (igrid .nme. l) go to 1100
call io ("attach","filel6","vfile ","grid90","-append”)
call io ("open","filel6","si")

c
c
c
c
c
c
c
c
c iji = number of files to be plotted.
1100 if (iji .eq. 0) go to 1200
c
¢ PLOT MAIN FILE
1150 ijj = 133+1

if (ijj .eq. 1ji) go to 1200

isym = isymb(1jj)

call io ("attach","filelS5","vfile ",filename(ijj),"-append")

call io ("open","filel5","si")

call plocv(isym,nl,idec)

go to 1150

286

1200 if (icopy .ne.
call hdcopy
c If nl=1,

\c completed.

GEOINDEX
kop) go to 1250

the enlargement or individual plotting has already been

1250 if (nl .eq. 1) go to 1500
call movabs(30,730)
call anmode
print ,"For an enlargement of part of this plot, type y "
read (0,100)irep
print ,"For a hard copy after enlargement, type c "
read (0,100) icopy
nl = 1
c Set 1jj=0 as it has been incremented previously.
i§5 = 0
if (irep .ne. jes) go to 1500
call enlrg(l4)
go to 1100
c
1300 nl = 1
ijj = 0
call indiv(lead)
go to 1100
c
c
c
1400 print ,"At the present time, the file you wish does not exist
\C"
print ,"Please enter 1 or 2 for the second statement"
go to 560
1500 call io ("close","fileld")
call io ("detach","filel4")
c call io ("close","filelé6")
c call io ("detach","filel6")

call
end

finitt(0,0)

SUBROUTINE NAME: ENLRG

Author: Pearl Porter

Purpose of the program: enlrg enlarges a part of the
plotting on the screen that the user defines by means
of the crosshair cursor.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call enlrg

Arguments: None

Subroutines called: movabs, anmode, vcursr, dwindo,
swindo, erase, movea, drawa, ancho (all Tektronix
routines)

Common data referenced: x1, y1, x2, y2

Input files: stat90 used on unit 14 (file14)

Output files: None

Arrays used: xx(6), yy(6), ist(10)

Called by: pin90

Error checking and reporting: Located in program

pin90

Constants: None

Program logic:

1. The virtual screen is redefined by means of a
Tektronix plotting routine called veursr. The user
positions the cursor at the lower left of the desired
area, and its screen coordinates are transmitted to
the computer by typing C. Then the user positions
the cursor at the upper right of the desired area
and again types C.

2. The screen is automatically erased.

3. A border is drawn for the map.

4. file14 is again read, and the States within the limits
of the specified virtual screen are plotted.

APPENDIX C 287

c *hkek SYSROUTINE ENLRG.FORTRAN *x&x

suoroutine enlry
¢ This routine enlarges a portion of the screen as
c Jefined by the cross-hair cursors.
c
c

dimension xx(6),yy(6)sista(10)
common x1l,ylsx2sy?
data jes/"y"/o,i0lk/" "/,kop/"c'"/
ichar = 43

10 rewind 14
call movabs(30,090)
call anmode

c Redefine grapnic area by using vcursr routine,
write (U,20)
20 format ("Position cursor at lower lLeft of desired area., type c¢")

call vcursr(ichars,x1,y1)

call movabs (30,680)

call anmode

write (0,30)

30 format("Position cursor at upper right of desired areartype ¢ ")

call vcursr(ichars.x2s,y2)

call dwindo(x1,x2,y1,y2)

call swindo(3,1023,0,780)

c
c
call erase
c
c DRAW BORODER FOR MAP
call movea(x1,y1)
call drawa(x2,y1)
call drawa(x2,y2)
call darawa(xl,y2)
call drawa(xl,y1)
c
call anmode
c Read header information.
70 read (14,8Ur,end=180)1f,1fno,isfrisfno,if1l
80 format (5i5)
c
90 ie = isfno
1if (1sfno .g4e. 6) i1e=6
call anmoage
c Read x-y coordinates,
read (14,107) (xx(1)esyy(id,i=1,ie)
100 format (121f6.3)
if (isfno .ge. 3) go to 105
call movea(xx(2),yy(2))
call ancho(ichar)
jo to 70
105 call movea(xx(1),yy(1))

do 110 k=1.,17e
call drawa(xx(k),yy(k))
110 continue

288

isfno=isfno-6
if (isfno)70,70,120

GEOINDEX

120 if (isfno-6)130,130,140

130 ie = isfno

C Read x-y coordinates.

143 read (14,100,end=160) (xx(i),yy(i),i=1,1ie)
do 150 k=1,ie
call drawa(xx(k)s,yy(k))

150 continue

c Continue drawing until isfno(no. of coordinates) has been exhausted.
if (isfno-6)70,70.,110

160 continue

c

18y return
end

SUBROUTINE NAME: INDIV

Awuthor: Pearl Porter

Purpose of the program.: indiv is called when 1-10 States
are to be plotted. This routine negates plotting the en-
tire United States. If will enlarge the maps of in-
dividual States as an option.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call indiv (lead)

Arguments: lead—Contains the title of the map

Subroutines called: movabs, anmode, erase, movea,
drawa (all Tektronix routines), min_max

Common data referenced: None

Input files: stat90 used on unit 14 (file14)

Output files: None

Arrays used: xx(6), yy(6), ista(10), lead(20)

Called by: pin90

C ****SUBRIUTINE INDIV.FORTRAN*#***
subroutine indiv(lead)
This routine

stored
screen,

in an array caltled
min_max routine

O 0O 0 00

Error checking and reporting: Located in pin90

Constants: None

Program logic:

1. An array ista is loaded with blanks.

2. The user is asked to type the corresponding 2-digit
number for the States to be plotted (limit of 10 in
ascending order).

The numbers are stored in ista.

Call min_max subroutine to find the minimum and
maximum range for the x and y coordinates.

The screen is erased.

The title of the map is written on the screen and the
border is drawn.

7. file14 is read until ista(j) equals ifno (found in header
record). The coordinates are then plotted until
isfno (number of x, y coordinates) has been ex-
hausted. The program continues to read through
the file until the end of file is reached or ista(j)
equals blanks.

oo

o o

is used when only 1-10 states are to be plotted.
The user regquests up to 10 states by number and these are
ista.
is called to redefine the virtual
screen thus giving an enlargement of the states requested.

In order to use the entire

dimension xx(6),yy(6)s,ista(10),lead(20)

data
data

iblk/"™ "/,kop/"c"/
izero/00/

nn3 = 993

Load ista with blanks

(o]

10

30

40

50

60
70

90

100

APPENDIX C 289

do 20 j3=1.,1u
ista(j) = iblk
continue

call movabs(30,690)
call anmode
write (0,30)
format (”"Give code number of each state to be plotted
Ltimit of 10 codes in ASCENDING order
Must be a ¢ digit number, 01-51")
read (0,40) (ista(jl,)=1,10)
format (1012)
The min_max routine will find the minimum and maximum coordinates
for the states requested and redefine the virtual window,.
call min_max(istarxlsx2,y1,y2)
call erase
call movabs(50u0.,750)
call anmoae
Lead is the title of the map to be plotted.
write (0,45) lead
format (1x,20a4)

DRAW BORDER FOR MAP
call movea(x1,y1)
call drawa(x2,y1)
call drawa(x2,y2)
call drawa(xl,y2)
call drawa(x1,y1)

do 160 j=1.,10

Read header information.
read (14,70,ena=180)if,ifnosisfsrisfnor,ifl
format (515)

if (ista(j)) .eg. i2zero) go to 180
if (ista(j) .ne. ifno) go to 60
if (if .ne. nn3) go to 60
Check 1f=993 to insure information from header record is
beinj compared rather than erronously matching the
state number against the coordinates.
ie = isfno
if (isfno .ge. 6) ie=é6
Read x-y coordinates,
read (14,90) (xx(i)oyy(i)eoi=lsie)
format (12f6.3)
it (isfno .ye. 3) go to 100
call movea(xx(2),yy(2))
3o to ou
call movea(xx(1),yy (1))
do 110 k=1,1e
call drawalxx(k),yy(k))
continue
isfno=isfno-6
if (isfno)160,160.,120

290 GEOINDEX

120 if (isfno=-6)130,130,140
130 ie = isfno
140 read (14,90,end=160) (xx(i),yy(id,i=l1,ie)

do 150 k=1,ie
call drawa(xx(k),yy(k))

150 continue

c Continue drawing ntil isfno(no.
if (isfno=-0)160,160,110

160 continue

c

180 return
end

of coordinates) has been exhausteag.

SUBROUTINE NAME: MIN_MAX

Author: Pearl Porter

Purpose of the program: min_max routine reads
through the individual States requested for plotting
and compares each x and y coordinate to find the
minimum and the maximum « and y coordinates. The
program then redefines the virtual window.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call min_max (ista,x1,x2,y1,y2)

Arguments:
ista— Array containing the numbers of the States to

be plotted

x1-Used to return the minimum x coordinate
x2—-Used to return the maximum x coordinate
y1—"Used to return the minimum y coordinate
y2—Used to return the maximum y coordinate

Subroutines called: dwindo (Tektronix routine)

Common data referenced: None

Input files: None

Output files: None

Arrays used: None

Called by: indiv
Error checking and reporting: Located in pin90
Constants: nn3
Program logic:
1. Load x7 with the maximum x coordinate and x2 with
the minimum x coordinate.
Load y7 with the maximum y coordinate and y2 with
the minimum y coordinate.
2. Read through file14 until ista(j) equals ifno.
3. Compare each x coordinate to x7 and x2.
If it is less than x7, load x7 with the value of the «
coordinate.
If the x coordinate is greater than x2, load x2 with
the value of the x coordinate.
The same logic applies to the y coordinate.
4. Compare each x and y coordinate until the number in
isfno (header record) has been exhausted.
5. If ista(j) is blank, go to next step. Otherwise, go to
step 3.
6. Call dwindo (Tektronix routine) using new values
from step 3 for x7, x2, y7, y2 to define the virtual
window.

7. Return

states requested for plotting and compares each xx coordinate

It does the same to the yy coordinates, x1 and y1 are set to
the maximum and x2 and y2 are set to the minimum before the

C **k * * SUBROUTINE MIN_MAX FORTRAN** %%
subroutine min_max(istarsxlsx2sy1ls,y2)
c
o This routine reads through the coordinates for the inagiviaual
c
c against x1 and x2 to find the minimum and maximum COOFf.
c
c
c compares are made,
c

dimension xx(6),yy(6),ista(10)
data izero/00/

APPENDIX C

nn3 = 993

x1 = 23,

x2 = .5

yl1 = 16.

ye = 1.

do 110 3=1,10
10 reaa (14,20,end=120)
2y format(5i5)

c If ista = U, all the requested data has been read.
if (ista()) .,eq. izero) yo to 120
if (ista(j) .ne. ifno) go to 10
if (if .ne. nn3) go to 10
c Check 1f=993 to insure this record is a header record.
>
ie = 6
c Read x-y coordinates,
30 read (14,4U0,end=120) (xx(id),yy(id)siz=t,ie)
40 format (12f6.3)
c
c Read each xx and yy coordinate and compare x1-2 and
y1-2 to find the minimum and maximum,
do 50 i1=1,1ie
if (xx(i) Jlte x1) x1 = xx(i)
if (xx(i) .gt. x2) x2 = xx(i)
if (yy (i) Jlt.e y1) y1 = yy(i)
if (yy(i) .gt. y2) y2 = yy(i)
50 continue
c
isfno = isfno-6
i f (isfno)110,110,60
60 if (isfno-6)70,70,30
70 ie = i1sfno
3o to 30
C
110 continue
c Define virtual window from coordinates stored during min_max routine.
120 call dwindo(x1s,x2r,ylsy2)

rewind 14
return
end

291

itseifnorisferistnoritl

SUBROUTINE NAME: GRID

Author: Pearl Porter

Purpose of the program: grid will plot the grid file,
file16, on the map drawn by pin90

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system. Multics

Calling sequence: call grid

Arguments: None

Subroutines called: movea, anmode, ancho, drawa (all
Tektronix routines)

Common data referenced: x1, y1, x2, y2

Input files: Grid file used on unit 16 (file16)

Output files: None

Arrays used: xx(6), yy(6)

Called by: pin90

Evrror checking and reporing: Located in program pin90

Constants: None

Program logic:

1. iskp is set to 9, and a count is kept so that only every
10th record is plotted.

2. The header record and first set of coordinates are
read.

292 GEOINDEX

3. If the first xx and yy coordinates are less than x7 or Go to step 2.
y1 or greater than x2 or y2, respectively, read the | 5. Plot the coordinates until isfno (number of coord-
next set of coordinates (step 2) inates) has been exhausted.

4. If number of sets of coordinates is less than 3, write | 6. Read the next header record, add 1 to j and continue
if, isf, and ichar. until 7 equals iskp, which equals 9. Go to step 2.

N 00N

0

10
20

30

\ces.

C

%% *SUBROUTINE GRID**%%*
THIS ROUTINE WILL PLOT THE GRID FILE

It has been determined to plot only every 10th set
of grid records since the Tektronix plot is so small.
subroutine grid

dimension xx(6),yy(6)
common x1l,yl,x2,y2

iskp = 9
Set iskp=9 so as to plot only every tenth record
of the grid file.

j =20
ichar = 43
rsiz = 0.3
rewind 16

Read header information.
read(16,20,end=270) if,ifno,isf,isfno,ifl
format (515)

ie = isfno
if (isfno .ge. 6) ie=6

Read x-y coordinates.
read(16,30) (xx(i),yy(i),i=1,1ie)
format (12f6.3)
if (isfno .ge. 3) go to 80

If coordinates are out of range, read next set of coordinat

if ((xx(l) .le. x1) eor. (yy(l) .le. yl)) go to 10
1f ((xx(l) .ge. x2) .or. (yy(l) .ge. y2)) go to 10
if ((ifno .eq. 1) .and. (isf .eq. 1)) go to 60
call movea(xx(l),yy(1l))
call anmode
If there’s less than 3 sets of coordinates, write if, isf a

\ecnd ichar.

40

write (0,40) 1if

format (lx,1i5)

ry=yy(l)-rsiz

call movea(xx(l),ry)
call anmode

write (0,40) isf

call movea(xx(2),yy(2))
call ancho(ichar)

go to 10

60

100

120

130
140
150

160
170

180

200

210

220

APPENDIX C

call movea(xx(l),yy(l))
call anmode

write (0,40) if

call movea(xx(2),yy(2))
call ancho(ichar)

go to 10

continue

if ((xx(l) .le. xl) .or. (yy(l) .le. yl)) go to 120
if ((xx(l1) .ge. x2) .or. (yy(l) .ge. y2)) go to 120
if ((ifno .eq. 1) .and. (isf .eq. 1)) go to 100
call movea(xx(l),yy(l))

call anmode

write (0,40) 1if

ry = yy(l)-rsiz

call movea(xx(l),ry)

call anmode

write (0,40) isf

if (ifl .eq. 0) go to 120

ry = ry-rsiz

call movea(xx(l),ry)

call anmode

write (0,40) 1ifl

go to 120

continue

call movea(xx(l),yy(l))
call anmode

write (0,40) if

continue

call movea(xx(2),yy(2))
do 130 k=2,1ie

call drawa(xx(k),yy(k))
continue

isfno=isfno-6
if (isfno)200,200,150
if (isfno-6)160,160,170
ie = 1isfno
read (16,30,end=270) (xx(1i),yy(i),1i=1,4ie)
do 180 k=1l,1e
call drawa(xx(k),yy(k))
Draw until isfno(no. of coordinates) has been exhausted.
continue

if (isfno-6)200,200,140

j = j+1

J 1is the count of header records read.
read(16,20,end=270) if,ifno,isf,isfno,ifl
ie = isfno
if (isfno .ge. 6) 1e=6
read(16,30) (xx(1i),yy(i),i=1,1e)

293

294 GEOINDEX
c Read through x-y coordinates until isfno has been exhausted
\c.
isfno = isfno-6
if (isfno)250,250,230
230 if (isfno-6)210,210,220
c
250 if (j .eq. iskp) go to 10
c The above compare is made to determine when the 10th record
\c is reached.
go to 200
c
270 continue
return
end

SUBROUTINE NAME: PLOCYV

Author: Pearl Porter
Purpose of the program: plocv will plot the symbols,
numbers, and outline from the GRASP input files
(file15) depending on the value of idec, which was
supplied by the user.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call plocv (ichar,nl,idec)
Arguments:
ichar—Symbol designated by the user to be used with
a specific GRASP input file
ni—Code specifying that this routine was called owing
to an enlargement option
idec—Code used to determine which of three options
will be used:
If idec = 1, symbol, number, and outline plotted
If idec = 2, symbol or outline (with no numbers)
If idec = 3, numbers only (no plotting or symbols) |
Subroutines called: movea, anmode, ancho, drawa (all i
Tektronix routines), io (Multics)
Common data referenced: x1, y1, x2, y2
Input files: GRASP file
Output files: None
Arrays used: xx(6), yy(6)
Called by: pin90
Error checking and reporting: Located in pin90
Constants: None
Program logic:
The subroutine does the following:
1. rsiz is loaded with 0.3. Later in the program, rsiz
will be subtracted from the y coordinate in order
to print the isf below the Jf.

2. If nl is equal to 1, loads rsiz with 0.05. If thisisan | 21.

A

o

15.

16.
17.
18.

19.
20.

S e

enlargement of a section of the screen, the
number to be subtracted has to be decreased to
compensate for the change in the size of the
screen.

Reads the header record.

Reads first z, y coordinate record.

If sets of coordinates are more than three, goes to
18.

If the first z, y coordinates are not within the range
of x1, y1, x2, and y2, goes to 3.

If ifno = 1 and isf = 1, goes to 13.

If idec = 2, goes to 12.

Writes the /if.

Subtracts rsiz from the y coordinate and uses this
computed coordinate to write isf.

If idec = 3, goes to 3.

Plots the symbol. Goes to 3.

. If idec = 2, goes to 17.

If n/ does not equal 1, goes to 15.

Subtracts rsiz (either 0.3 or 0.05) from the first y
coordinate.

Moves the cursor to the £ and computed y coor-
dinates. Goes to 16.

Moves cursor to position designated by « and y
coordinates.

If idec = 3, write if. Goes to 3.

Plots symbol. Goes to 3.

If the first z, y coordinates are not within the range
of x1, y1, x2, and y2, goes to 20.

If ifno = 1 and isf = 1, goes to 19.

Writes /f, isf, and if1 on map. Goes to 20.

Writes if.

If idec = 3, there will be no plotting.

Otherwise, continues drawing until isfno (number
of coordinates) has been exhausted. Goes to 3.

At EOF, closes and detaches file15.

[B2 N = I o TN »]

10

20
30

50

62
65

****SUBROUTINE PLOCV x**x

If
If
If

suoroutine plocv(ichar,nt

dimension xx(6),yy(6)
common x1l,yl,x2s,y2

idec
idec
idec

rsiz=0.3

APPENDIX C

sidec)

if (nl .eqs 1) rsiz = 0,050

rewind 15
continue

Read header information,
ifnosrisfrisftnorifil

read (15,30,end=160) iif,
format (5i15)

ie = isfno
if (isfno .ge. 6) ie=6
Read x-y coordinates.

read (15,4U) (xx(idsyy(ido,i=lsie)

format (12f6.3)

if (isfno .ge. 3) go to 70

if ((xx(1) .le. x1) .or.
if ((xx(1) .ye. x2) .or.,
if ((ifno .eq. 1) .and. (
if (idec .eg. 2) go to 55
call movea(xx(1),yy(1))
call anmode

This routine writes if,
write (0,50) if
format (1x,15)
ry = yy(1)-rsiz
call movea (xx(1),ry)
call anmode
write (0,50) isf
if (idec .eg. 3) go to 20
call movea(xx(2),yy(2))
call ancho(ichar)
go to 20

continue

This routine will write
if (idec .ege. 2) go to 67
if (ntl .ne. 1) yo to 62
ry = yy(1)-rsiz
call movea(xx(1),ry)
go to 65
call movea(xx(1),yy (1))
call anmode

(yy(1) .

1 symbol, number and outline will be plotted.
2, symbol or outline (with no numbers).
3, numoers only (no plotting or symbols).

le. y1)) gyo to 20

(yy(1) .ge. y2)) go to 20

isf .eqg.

isf and

if and

1)) go to 60

ichare.

ichar depending on idec.

295

296 GEOINDEX

write(0,50) if
if (idec .egq. 3) go to 20

67 call movea(xx(2),yy(2))
call ancho(ichar)
g0 to 20

c

70 continue

if ((xx(1) .le. x1) .or. (yy(1) .le. y1)) go to 9U
if ((xx(1) .ge. x2) .or., (yy(1) .ge. ¥2)) go to 90
if ((ifno .eq. 1) .and. (isf .,eq. 1)) go to 80

1t (idec .eg. 2) go to 20

call movea(xx(1),yy (1))

call anmode

c This routine will print out ifs isf and i1f1,

write (0,50) if

ry = yy(l)-rsiz

call movea(xx(1),ry)

call anmode

arite (0,50) isf

if (if1 .eg. 0) go to 93

ry = ry-rsiz

call movea(xx(1),ry)

call anmode

write (U,5U) 111

go to 90
C
80 continue
if (idec .eg. 2) go to 90
call movea(xx(1),yy(1))
call anmode
write (U,50) 1 f
c
90 continue
call movea(xx(2),yy(2))
do 1U0 k=2,1%e
if (idec .eg. 3) go to 10U
c If igec = 3, bypass any plotting.
call drawal(xx(k),yy(k))
100 continue
c
110 isfno=isfno-6
it (isfno) 10,710,120
120 if (isfno-6) 130,130,140
134 ie = isfno
c
140 read(15,40,end=160) (xx(i),yy(idoi=t,ie)
do 150 k=1,1ie
if (idec .eq. 3) go to 150
call drawa(xx(k)e,yy(k))
150 continue
c

if (isfno-6) 10,710,110

APPENDIX D 297
169 continue
call 70 ("close","filel15")
call jo ("detach","filel15")
return
end
APPENDIX D. FORMATS AND NOTES
FORMAT OF REFNM FILES
lﬁe‘? i Item name Character type f?gﬁix;:]nglh
1 Id Integer-in automatic 4
2 State Dictionary character 20
3 Author1l Embedded character string 60
4 Author 2 ——do 60
g Author 3 ——do 60
7
8 Year Integer 4
9 Titlel Embedded character string 60
10 Title2 —-do 60
11 Title 3 _—do 60
12 County 1 or region 1 ——do 60
13 County 2 or region 2 __do 60
14 County 3 or region 3 ——do 60
15 County 4 or region 4
16 County 5 or region 5
17 Publisher Embedded character string 60
18 Scale 1 Integer 8
19 Scale 2 __do 8
20 Scale 3 _do 8
21 Scale 4 ——do 8
22 Scale 5 __do 8
23 Series1 Embedded character string 60
24 Emphasis __do 60
25 Area of coverage Real 8
26 Unit for area of coverage Embedded character string 7
27 Extreme north latitude Integer DDDMMSS S* 12
28 Extreme south latitude ——do 12
29 Extreme west longitude ——do 12
30 Extreme east longitude __do 12
31 Center-point latitude ~—do 12
32 Center-point longitude __do 12
33 Boundary id Integer not used.
34 Other map not included Embedded character string 60
35 Depositories _-do 60
36 Base Dictionary character string 30
37 Titled Embedded character string 60
38 Geology or geochemistry __do 12
39 Plate 1 map plate name __do 30
40 Plate 2 map plate name _-do 30
41 Plate 3 map plate name —-do 30
42 Plate 4 map plate name __do 30
43 Plate 5 map plate name __do 30
44 Idstat-State code Integer 2
45 Idsubl __do 2
46 Idsub2 —do 2
47 Idsub3 —do 2
48 Idsub4 —-do 2
49 Idsubb _do 2
50 Bound 1 __do 6
51 Bound 2 —_do 6
52 Bound 3 _-do 6
53 Bound 4 ——do 6
54 Bound 5 _do 6
55 Spanl _do 6
56 Span2 ——do 6

298 GEOINDEX

l;ﬁ:" Item name Character type igﬁix;;l:tnh
57 Span3 __do 6
58 Span4 _.do 6
59 Spanb _-do 6
60 Series 2 mbedded character string 60
61 Scale 6 Integer 8
62 Scale 7 _-do 8
63 Scale 8 _-do 8
64 Scale 9 _—do 8
65 Scale 10 —do 8
66 Plate 6 _-do 30
67 Plate 7 _-do 30
68 Plate 8 —-do 30
69 Plate 9 —-do 30
70 Plate 10 —-do 30
71 Idsub6 _do .2
72 Idsub7 ——do Vo2
73 Idsub8 _-do 2
74 Idsub9 __do 2
75 Idsub 10 ——do 2
76 Bound 6 —-do 6
77 Bound 7 __do 6
78 Bound 8 ——do 6
79 Bound 9 _—do 6
80 Bound 10 __do 6
81 Span6 __do 6
82 Span7 __do 6
83 Span8 __do 6
84 Span9 _-do 6
85 Span 10 --do 6
86 Also other maps Character 30
87 Dum0 Integer 1

Flag for expansion.

1 prototype.

2 additional maps.
88 Duml Integer 1
89 Dum2 _-do
90 Dum3 ~-do 1
91 Dum4 __do 1
92 Dumb —.do 1
93 Dumé6 __do 1
94 Dum?7 _-do 1
95 Dum8 __do 1
96 Dum?9 __do 1

1

A space and S indicate a decimal point followed by one digit.

FORMAT FOR REFERENCE FILE

Columns 1,2 Columns 3,4,5 Columns 6,7 Columns 8 to 67
State Reference Item No. Data

No.
12 13 12 60 characters

[BN [PR}

maximum

NOTES FOR ENTERING CARD DATA

. Do not put a comma after the year.

. Item 12: All counties or regions [for Item 12] are typed in small let-
ters.

. Item 12: All counties or regions are typed on the same line and a
comma and a space separates each. Counties or regions cannot
exceed 60 characters. Continue on the next line, creating Item
13.

. Item 24 (emphasis) is always typed in lowercase. If there is more
than one emphasis, add a comma and a space between each one.

. Items 18-22, 61-65: Omit the period or semicolon after scale.

. Omit the one digit and colon before the scale.

. Omit commas between scales.

. Title can be not more than 60 characters of data; together with the

13.

14.

15.

16.
17.

numeric data (State, ref, item number), 67 characters is max-
imum number for any one line.

. Ttem 38 (geology) is always in lowercase.
10.
11.
12.

Items 3-5: Omit spaces between authors initials.

Item 17: Omit space between U. and S. in U.8. Geol. Survey.

Ttem 2 (the State name) always has first letter capitalized and the
rest in lower case, as in Missouri.

Item 18-22, 62-65: Omit the (a), (b), (¢), and so on, between scales.

Item 39-43, 66-70: The first letter in the name of the first plate is
always capitalized, names of all other plates begin with small let-
ters.

If there is no series (Item 23), place a period after name of
publisher.

Do not underscore entered data.

Item 35: Type as shown in “Abbreviations for depositories.” Use
no more than 60 characters.

Abbreviations for depositories

USBM = U.S. Bureau of Mines

BM&G = Bureau of Mines and Geology
GS = Geological Survey

WYGS = Wyoming Geological Survey

